Skip to main content
Log in

Computational (Numerical) Diameter in a Context of General Theory of a Recovery

  • Brief communications
  • Published:
Russian Mathematics Aims and scope Submit manuscript

Abstract

We discuss a C(N)D-statement, consisting of the known and elaborating in decades C(N)D-1 statement that can be and should be interpreted as quantitative statement of approximation theory and computational mathematics, which, in common with new prolongations of both C(N)D-2 and C(N)D-3, is suggested as a natural theoretical and computational scheme of further numerical analysis development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Temirgaliev, N. “Number-Theoretic Methods and Probability-Theoretic Approach to the Tasks of Analysis. Theory of Investments and Approximations, Absolute Convergence and Transformations of Fourier series”, Vestn. EAU 3, 90–144 (1997) [in Russian].

    Google Scholar 

  2. Kolmogorov, A. N. “Über die beste Annäaherung von Funktionen einer gegebenen Funktionen klasse”, Ann. Math. 37, no. (1), 107–110 (1936).

    Article  MathSciNet  Google Scholar 

  3. Stechkin, S. B. “About the Best Approximation of Given Classes of Functions by Any Polynomials”, Usp. Mat. Nauk 9, no. (1), 133–134 (1954) [in Russian].

    Google Scholar 

  4. Osipenko, K. Y. “Best Approximation of Analytic Functions From Information About Their Values at a Finite Number of Points”, Math. Notes 19, no. (1), 17–23 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  5. Heinrich, S. “Random Approximation in Numerical Analysis”, in: K. D. Bierstedt, A. Pietsch, W. M. Ruess, D. Vogt (Eds.), Functional Analysis (Marcel Dekker, New York, 1993), pp. 123–171.

    Google Scholar 

  6. Hardy, G. H. Divergent Series (American Mathematical Soc, 2000).

    MATH  Google Scholar 

  7. Volkov, I.I., Ulyanov, P. L. “About Some New Results About the Total Summation Theory of Series and Sequences”, in: R. Cook, Infinite Matrices and Spaces of Sequences (GIFML, Moscow, 1960), pp. 363–467.

    Google Scholar 

  8. Kashin, B. S., Saakyan, A. A. Orthogonal Series (American Mathematical Soc, 2005).

    Book  MATH  Google Scholar 

  9. Korneichuk, N. P. Exact Constants in Approximation Theory (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  10. Kashin, B. S., Kulikova, T. Y. “On the Validity for Frames of a Result Concerning Orthogonal Systems”, Math. Notes 77, no. (2), 280–282 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  11. Blatter, K. Wavelet Analysis. Fundamentals of Theory (Tekhnosfera, Moscow, 2004) [Russian trasnala-tion].

    Google Scholar 

  12. Novikov, I. Ya., Protasov, V. Yu., Skopina, M. A. Theory of Wavelets (Fizmatlit, Moscow, 2005) [in Russian].

    MATH  Google Scholar 

  13. Temlyakov, V. N. Approximation of Periodic Functions (Comput. math. and anal. ser.) (Nova Sci. Publ., Commack, NY, 1993).

    MATH  Google Scholar 

  14. Tikhomirov, V. M. Some Questions of Approximation Theory (Moscow Univ. Press, Moscow, 1976) [in Russian].

    Google Scholar 

  15. Zygmund, A. Trigonometric Series (Mir, Moscow, 1965) [Russian translation].

    MATH  Google Scholar 

  16. Ryabenky, V. S. Introduction to Computational Mathematics (Nauka, Moscow, 1994) [in Russian].

    Google Scholar 

  17. Temlyakov, V. N. Greedy Approximation (Cambridge University Press, Cambridge, 2011).

    Book  MATH  Google Scholar 

  18. Sard, A. “Best Approximate Integration Formulas; Best Approximation Formulas”, Amer. J. Math. 71, 80–91 (1949).

    Article  MathSciNet  MATH  Google Scholar 

  19. Nikol’skii, S. M. “Estimates for Approximations by Quadrature Formulae”, Usp. Mat. Nauk 5, No. (2(36)) 165–177 (1950).

    Google Scholar 

  20. Bakhvalov, N. S. “About Approximate Calculation of Multiple Integrals”, Vestn. Moscow State University. Ser. Math mekhan. 4, 3–18 (1959) [in Russian].

    Google Scholar 

  21. Korobov, N. M. Number Theoretic Methods in Approximate Analysis (Fizmatgiz, Moscow, 1963) [in Russian].

    MATH  Google Scholar 

  22. Sharygin, I. F. “A Lower Bound for the Error in Quadrature Formulas for Classes of Functions”, Zhurn. Vychisl. Matem. i Matem. Fiz. 3, no. (3), 370–376 (1963) [in Russian].

    Google Scholar 

  23. Babushka, I., Sobolev, S. L. “Optimization of Numerical Methods (Conditional Extremum of Algorithms Concerning Data From Tables of Special Functions, Computer Speeds and Properties, Standard Schemes and Bounds of Unknown Functions)”, Apl. Matem. 10, 96–129 (1965).

    Google Scholar 

  24. Ioffe, A. D., Tikhomirov, V. M. “Duality of Convex Functions, and Extremal Problems”, Russian Math. Surveys 236, 53–124 (1968).

    Article  MATH  Google Scholar 

  25. Babenko, K. I. Fundamentals of Numerical Analysis (Nauka, Moscow, 1986).

    Google Scholar 

  26. Micchelli, C. A. and Rivlin, T. J. “A Survey of Optimal Recovery”, in: C. A. Micchelli and T. J. Rivlin (Eds.), Optimal Estimation in Approximation Theory (Plenum Press, New York, 1977), pp. 1–54.

    Chapter  Google Scholar 

  27. Fisher, S. D., Micchelli, Ch. A. “Optimal Sampling of Holomorphic Functions”, Amer. J. Math. 106, no. (3), 593–609 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  28. Pietsch, A. Eigenvalues and s-Numbers (Geest and Portig, Leipzig and Cambridge Univ. Press, Cambridge, 1987).

    MATH  Google Scholar 

  29. Traub, J. F., Wasilkowski, G. W. and Wozniakowski, H. Information-Based Complexity (Academic Press, New York, 1988).

    MATH  Google Scholar 

  30. Novak, E., Wozniakowski, H. Tractability of Multivariate Problems. Linear information, EMS Tracts Math. 6. Zurich (European Math. Soc. Publishing House, 2008), Vol. 1.

    Book  MATH  Google Scholar 

  31. Lokutsievskiy, O. V., Gavrikov, M. B. Foundations of Numerical Analysis (“Janus”, Moscow, 1995).

    Google Scholar 

  32. Plaskota, L. Noisy Information and Computational Complexity (Cambridge University Press, 1996).

    Book  MATH  Google Scholar 

  33. Magaril-Il’yaev, G. G., Osipenko, K. Y. “Optimal Recovery of Values of Functions and Their Derivatives From Inaccurate Data on the Fourier Transform”, Sbornik: Mathematics 195, no. (10), 1461–1476 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  34. Marchuk, A. G., Osipenko, K. Yu. “Best Approximation of Functions Specified With an Error at a Finite Number of Points”, Mathematical Notes of the Academy of Sciences of the USSR 17, no. (3), 207–212 (1975).

    Article  MATH  Google Scholar 

  35. Azhgaliev, Sh., Temirgaliev, N., “Informativeness of Linear Functionals”, Mathematical Notes 73, no. (5), 759–768 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  36. Temirgaliev, N., Zhubanysheva, A. “Order Estimates of the Norms of Derivatives of Functions With Zero Values on Linear Functionals and Their Applications”, Russian Mathematics 61, no. (3), 77–82 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhubanysheva, A. Zh., Temirgaliyev, N. “Informative Cardinality of Trigonometric Fourier Coefficients and Their Limiting Error in the Discretization of a Differentiation Operator in Multidimensional Sobolev Classes”, Computational Mathematics and Mathematical Physics 55, no. (9), 1432–1443 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  38. Temirgaliev, N., Sherniyazov, K. E., Berikhanova, M. E. “Exact Orders of Computational (Numerical) Diameters in Problems of Reconstructing Functions and Sampling Solutions of the Klein–Gordon Equation from Fourier Coefficients”, Proc. Steklov Inst. Math. 282, no. (1), 165–191 (2013).

    Article  MathSciNet  Google Scholar 

  39. Temirgaliev, N., Abikenova, Sh. K., Zhubanysheva, A. Zh, Taugynbaeva, G. E. “Discretization of Solutions to a Wave Equation, Numerical Differentiation, and Function Recovery With the Help of Computer (Numerical) Diameter”, Russian Mathematics, No. 8, 86–93 (2013).

    MATH  Google Scholar 

  40. Abikenova, S., Utesov, A., Temirgaliev, N. “On the Discretization of Solutions of the Wave Equation With Initial Conditions From Generalized Sobolev Classes”, Mathematical Notes 91, no. (3), 430–434 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  41. Temirgaliev, N., Kudaibergenov, S. S., Shomanova, A. A. “Applications of Smolyak’s Quadrature Formulas to the Numerical Integration of Fourier Coefficients and in Recovery Problems”, Russian Mathematics 54, no. (3), 45–62 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  42. Ibatulin, I. Zh., Temirgaliev, N. “On the Informative Power of All Possible Linear Functionals for the Discretization of Solutions of the Klein–Gordon Equation in the Metric of L 2,∞”, Differ. Equ. 44, No. 4, 510–526, (2008).

    Article  MathSciNet  MATH  Google Scholar 

  43. Temirgaliev, N. “Tensor Products of Functionals and Their Application”, Dokl. Math. 81, no. (1), 78–82 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  44. Nauryzbaev, N. Zh., Shomanova, A. A., Temirgaliev, N. “On Some Special Effects in the Theory of Numerical Integration and Restoration of Functions”, Russian Mathematic, No. 3, 96–102 (2018).

    Google Scholar 

Download references

Acknowledgments

Supported by the Ministry of Education and Science of the Republic of Kazakhstan, projects Nos. AP05136219, AP05132938.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. Temirgaliyev or A. Zh. Zhubanysheva.

Additional information

Russian Text © N. Temirgaliyev, A.Zh. Zhubanysheva, 2019, published in Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2019, No. 1, pp. 89–97.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Temirgaliyev, N., Zhubanysheva, A.Z. Computational (Numerical) Diameter in a Context of General Theory of a Recovery. Russ Math. 63, 79–86 (2019). https://doi.org/10.3103/S1066369X19010109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066369X19010109

Key words

Navigation