Russian Mathematics

, Volume 62, Issue 4, pp 74–85 | Cite as

Solvability of Linear Matrix Boundary-Value Problem

  • S. M. Chuiko


We find solvability conditions and give a construction of generalized Green operator for a linear matrix boundary-value problem. We suggest an operator which reduces a linear matrix equation to a standard linearNoetherian boundary-value problem. To solve a linearmatrix systemwe use an operatorwhich reduces a linear matrix equation to a linear algebraic equation with rectangular matrix.


Green operator Noetherian boundary-value problem,matrix differential equation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Azbelev, N. V., Maksimov,V. P., Rakhmatullina, L. F. Introduction to the Theory of FunctionalDifferential Equations (Nauka,Moscow, 1991; Hindawi Publishing, 2007).zbMATHGoogle Scholar
  2. 2.
    Boichuk, A. A., Samoilenko, A. M. Generalized Inverse Operators and Fredholm Boundary-Value Problems. 2nd Ed. (De Gruyter, Berlin, Boston, 2016).CrossRefzbMATHGoogle Scholar
  3. 3.
    Bellman, R. Introduction toMatrix Analysis (McGraw-Hill Book Company, New York–Toronto–London, 1960; Nauka,Moscow, 1969).Google Scholar
  4. 4.
    Boichuk, A. A., Krivosheya, S. A. “Criterion of the Solvability of Matrix Equations of the Lyapunov Type”, Ukr. Math. J. 50, No. 8, 1162–1169 (1998).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chuiko, S. M. “A Generalized Matrix Differential-Algebraic Equation”, J. Math. Sci. (N. Y.) 210, No. 1, 9–21 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Campbell S.L. Singular Systems of Differential Equations (Pitman Advanced Publishing Program, San Francisco–London–Melbourne, 1980).zbMATHGoogle Scholar
  7. 7.
    Boyarintsev, E., Chistyakov, V. F. Algebro-Differential Systems:Methods of Solution and Study (Nauka, Novosibirsk, 1998) [in Russian].zbMATHGoogle Scholar
  8. 8.
    Chuiko, S. M. “Green’s Operator of a Generalized Matrix Linear Differential-Algebraic Boundary Value Problem”, Sib.Math. J. 56, No. 4, 752–760 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Boichuk, A. A., Krivosheya, S. A. “A Critical Periodic Boundary Value Problem for a Matrix Riccati Equations”, Differ. Equ. 37, No. 4, 464–471 (2001).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Chuiko, S.M. “On Solving LinearMatrix Equations”, Nauchn. Vestn. Kharkovsk. Univ. Ser.Matem., Prikl. Matem.,Mekh. 81, 28–34 (2015) [in Russian].Google Scholar
  11. 11.
    Voevodin, V. V., Kuznetzov, Y. A. Matrices and Calculations (Nauka, Moscow, 1984) [in Russian]Google Scholar
  12. 12.
    Samoilenko, A. M., Shkil’, M. I., Yakovetz, V. P. Linear Systems of Differential Equations With Degeneration (Vishcha Shkola, Kiev, 2000) [in Russian].Google Scholar
  13. 13.
    Boichuk, A. A., Pokutnyi, A. A., Chistyakov, V. F. “Application of Perturbation Theory to the Solvability Analysis of Differential Algebraic Equations”, Comput.Math. andMath. Physics 53, No. 6, 777–788 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Chuiko, S. M. “Linear Noether Boundary Value Problem for Linear Differential-Algebraic System”, Computer Research and Modeling 5, No. 5, 769–783 (2013) [in Russian].Google Scholar
  15. 15.
    Laptinskii, V.‘N., Makovetskii, I. I. “On the Constructive Analysis of a Two-Point Boundary Value Problem for a Nonlinear Lyapunov Equation”, Differ. Equ. 41, No. 7, 1045–1048 (2005).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Bondarev, A. N., Laptinskii, V. N. “Multipoint Boundary Value Problem for the Lyapunov Equation in the Case of Strong Degeneration of the Boundary Conditions”, Differ. Equ. 47, 778–786 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Chuiko, S. M. Linear Boundary Value Problem for a Matrix Differential Equation, in On the Seminar on Qualitative Theory of Differential Equations at Moscow State University, Differ. Equ. 52, No. 11, 1578–1579 (2016) [in Russian].Google Scholar
  18. 18.
    Chujko, S. M. “Green Operator of Noetherian Linear Boundary Value Problem for a Matrix Differential Equation”, Dynam. Syst. 4 (32) 1–2, 101–107 (2014).Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Donbass State Pedagogical UniversitySlavyanskUkraine

Personalised recommendations