Russian Mathematics

, Volume 61, Issue 4, pp 65–71 | Cite as

A regularized method for solving constrained pseudoinverse problems

  • R. A. Shafiev
  • E. A. Bondar’
  • I. Yu. Yastrebova
Article
  • 21 Downloads

Abstract

For a constrained pseudoinverse problem whose operators satisfy the complementarity condition we propose a one-parameter continuous regularization method of the second order. This method is based on stabilization of solutions to Cauchy problems for a linear differential equation of the second order in a Hilbert space which is obtained from the heavy ball method. We establish requirements to the parametric regularization function and perturbation levels that ensure the stability of the method in the class of all possible bounded perturbations.

Keywords

constrained pseudoinverse problem continuous regularization method of second order complementarity condition for operators 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ninamide, N. and Nakamura, K. “A Restricted Pseudoinverse and its Application to Cotrained Minima”, SIAM J. Appl.Math. 19, 167–177 (1970).MathSciNetCrossRefGoogle Scholar
  2. 2.
    Morozov, V. A. and Kirsanova, N. N. “One Generalization of the Regularization Method” in Calculating Methods and Programming (Mosk. Gos. Univ., Moscow, 1970), No. 14, 40–45.Google Scholar
  3. 3.
    Groetsch, C.W. “Regularization with Linear Equality Constraints”, Lect. Notes Math., No. 1225, 168–181 (1986).MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Vasin, V. V. and Ageev, A. L. Ill-Posed Problems with A Priori Information (Nauka, Ekaterinburg, 1993) [in Russian].MATHGoogle Scholar
  5. 5.
    Vainikko, G. M. and Veretennikov, A. Yu. Iteration Procedures in Ill-Posed Problems (Nauka, Moscow, 1986) [in Russian].Google Scholar
  6. 6.
    Bakhvalov, N. S., Zhidkov, N. P., and Kobel’kov, G. M., Numerical Methods (Nauka, Moscow, 1987) [in Russian].MATHGoogle Scholar
  7. 7.
    Morozov, V. A. Regular Methods for Solving Ill-Posed Problems (Nauka, Moscow, 1987) [in Russian].MATHGoogle Scholar
  8. 8.
    Bondar’, E. A. and Shafiev, R. A. “Solution of a Constrained Pseudoinversion Problem by the Second Order Continuous RegularizationMethod”, Vestn.NGGU.Matem.Modelir. iOptim. Upravlenie, No. 11, 176–182 (2011) [in Russian].Google Scholar
  9. 9.
    Shafiev, R. A. Pseudoinversion of Operators and Applications (Elm, Baku, 1989) [in Russian].MATHGoogle Scholar
  10. 10.
    Arkharov, E. V. and Shafiev, R. A. “Regularization Methods for the Constrained Pseudoinversion Problem with Inaccurate Data”, Comput. Math. Math. Phys. 43, No. 3, 331–337 (2003).MathSciNetMATHGoogle Scholar
  11. 11.
    Bondar’, E. A. and Yastrebova, I. Yu. “Setting Method for Constrained Pseudoinversion Problem”, Vestn. NGGU.Matem.Modelir. i Optim. Upravlenie 1, 55–63 (2003) [in Russian].Google Scholar
  12. 12.
    Bondar’, E. A. and Shafiev, R. A. “A Continuous Method for Solving the Constrained Pseudoinverse Problem”, Vestn. NGGU.Matematika 1, 4–14 (2006).Google Scholar
  13. 13.
    Shafiev, R. A., Bondar’, E. A., and Yastrebova, I. Yu. “A Continuous RegularizationMethod and Constrained Pseudoinversion Problems with Additional Restrictions on Input Operators”, Uchen. Zap. Kazansk. Univ. Ser. Fiz.-Matem. Nauki 158, No. 1, 106–116 (2016) [in Russian].Google Scholar
  14. 14.
    Antipin, A. S. “Continuous and Iterative Processeswith Projection and Projection-TypeOperators“, Voprosy Kibernetiki. Vychisl. Vopr. Analiza Bol’shikh Sistem (Nauchn. sovet po kompleksnoi probleme “Kibernetika ” Akad. Nauk SSSR, Moscow, 1989), pp. 5–43 [in Russian].Google Scholar
  15. 15.
    Vasil’ev, F. P. Methods for Solving Extremum Problems (Nauka, Moscow, 1981) [in Russian].Google Scholar
  16. 16.
    Ryazantseva, I. P. “A Continuous Method for Constrained Minimization Problems”, Comput. Math. Math. Phys. 39, No. 5, 702–710 (1999).MathSciNetMATHGoogle Scholar
  17. 17.
    Trenogin, V. A. Functional Analysis (Fizmatlit, Moscow, 2007) [in Russian].MATHGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • R. A. Shafiev
    • 1
  • E. A. Bondar’
    • 2
  • I. Yu. Yastrebova
    • 3
  1. 1.Nizhni Novgorod State Pedagogical UniversityNizhni NovgorodRussia
  2. 2.Nizhni Novgorod State Architectural and Civil Engineering UniversityNizhni NovgorodRussia
  3. 3.Nizhni Novgorod State UniversityNizhni NovgorodRussia

Personalised recommendations