Advertisement

Russian Mathematics

, Volume 61, Issue 4, pp 18–28 | Cite as

Solution of elliptic optimal control problem with pointwise and non-local state constraints

Article

Abstract

We study an optimal control problem of a system governed by a linear elliptic equation, with pointwise control constraints and pointwise and non-local (integral) state constraints. We construct a finite-difference approximation of the problem, we prove the existence and the convergence of the approximate solutions to the exact solution. We construct and study mesh saddle point problem and its iterative solution method and analyze the results of numerical experiments.

Keywords

elliptic optimal control state constraint finite difference approximation constrained saddle point problem iterative methods 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bergounioux, M., Haddou, V., Hintermuller, M., Kunisch, K. “A Comparison of a Moreau–Yosida-Based Active Set Strategy and Interior Point Methods for Constrained Optimal Control Problems”, SIAM J. Optim., 11, 495–521 (2000).MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Troltzsch, F., Yousept, I. “A Regularization Method for the Numerical Solution of Elliptic Boundary Control Problems with Pointwise State Constraints”, Comput. Optim. Appl. 42, 43–66 (2009).MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Hintermuller, M., Hinze, M. “Moreau–Yosida Regularization in State Constrained Elliptic Control Problems: Error Estimates and Parameter Adjustment”, SIAMJ.Numer.Anal. 47, 1666–1683 (2009).MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Hinze, M., Schiela, A. “Discretization of Interior Point Methods for State Constrained Elliptic Optimal Control Problems: Optimal Error Estimates and Parameter Adjustment”, Comput. Optim. Appl. 48, 581–600 (2011).MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Lapin, A. “Preconditioned Uzawa-Type Methods for Finite-Dimensional Constrained Saddle Point Problems”, Lobachevskii Journal of Mathematics 31, No. 4, 309–322 (2010).MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Lapin, A., Khasanov, M. “State-Constrained Optimal Control of an Elliptic Equation with its Right-Hand Side Used as Control Function”, Lobachevskii J.Math. 32, No. 4, 453–462 (2011).MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Zalyalov, D.G., Lapin, A.V. “Numerical Solution of anOptimal Control Problem Governed by a Linear Elliptic Equation with Nonlocal State Constraints”, Proceedings of Kazan University. Physics and Mathematics Series 154, No. 3, 129–144 (2012) [in Russian].MATHGoogle Scholar
  8. 8.
    Laitinen, E., Lapin, A. “Iterative Solution Methods for a Class of State Constrained Optimal Control Problems”, AppliedMathematics 3 (12), 1862–1867 (2012).Google Scholar
  9. 9.
    Laitinen, E., Lapin, A., Lapin, S. “Iterative Solution Methods for Variational Inequalities with Nonlinear Main Operator and Constraints to Gradient of Solution”, Lobachevskii J.Math. 33, No. 4, 364–371 (2012).MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Laitinen, E., Lapin, A. “Iterative SolutionMethods for the Large-Scale Constrained Saddle Point Problems”, Numer. Methods for Diff. Equat., Optim., and Technological Problems, Comp. Meth. Appl. Sc. 27, 19–39 (2013).MATHGoogle Scholar
  11. 11.
    Ekland I., Temam R. Convex analysis and variational problems (North-Holland, Amsterdam, 1976; Mir, Moscow, 1979).Google Scholar
  12. 12.
    Rannacher, R., Scott R. “Some Optimal Error Estimates for Piecewise Linear Finite Element Approximations”, Mathematics of Computation 38 (158), 437–445 (1982).MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Nochetto, R. “Pointwise Accuracy of a Finite Element Method for Nonlinear Variational Inequalities”, Numer.Math. 54, 601–618 (1989).MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Glowinski, R., Lions, J.-L., Tremolier, R. Numerical Analysis of Variational Inequalities (Dunod, Paris, 1976; Mir, Moscow, 1979).Google Scholar
  15. 15.
    Ciarlet Ph. The Finite Element Method for Elliptic Problems (North-Holland, Amsterdam, New York, Oxford, 1978; Mir, Moscow, 1980).MATHGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  1. 1.Kazan (Volga Region) Federal UniversityKazanRussia

Personalised recommendations