Solid-State Synthesis and Characterization of Hafnium Diboride Nanoparticles

Abstract

Hafnium diboride (HfB2) nanoparticles have been prepared by a solid-state reaction of hafnium dioxide (HfO2), metallic magnesium (Mg) and sodium borohydride (NaBH4) at 700°C in an autoclave. The structure and morphology of the obtained product are investigated by X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The transmission electron microscopy (TEM) image shows that the average size of HfB2 nanoparticles is about 30 nm. The oxidation behavior of HfB2 is studied by thermogravimetric analysis (TGA). It has good thermal stability and oxidation resistance below 380°C in air. Furthermore, the possible formation mechanism of HfB2 is also discussed.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. 1

    Fahrenholtz, W.G., Hilmas, G.E., Talmy, I.G., and Zaykoski, J.A., Refractory diborides of zirconium and hafnium, J. Am. Ceram. Soc., 2007, vol. 90, no. 5, pp. 1347–1364.

    CAS  Article  Google Scholar 

  2. 2

    Wang, L.B., Shen, Q.L., Qin, H.F., Zhao, D., Liu, W., Sun, J., Zhu, B., and Zhou, Q., Chemical synthesis of niobium diboride nanosheets by a solid-state reaction route, J. Superhard Mater., 2018, vol. 40, no. 6, pp. 392–395.

    Article  Google Scholar 

  3. 3

    Wang, L.B., Zhao, D.J., Cheng, Q.L., Lu, Q., Liu, W., Bao, K., Zhu, B., and Zhou, Q., Iodine-assisted solid-state synthesis and characterization of nanocrystalline zirconium diboride nanosheets, J. Superhard Mater., 2018, vol. 40, no. 4, pp. 254–258.

    Article  Google Scholar 

  4. 4

    Kalish, D., Clougherty, E.V., and Kreder, K., Strength fracture mode and thermal stress resistance of HfB2 and ZrB2, J. Am. Ceram. Soc., 1969, vol. 52, no. 1, pp. 30–36.

    CAS  Article  Google Scholar 

  5. 5

    Ni, D.W., Zhang, G.J., Kan, Y.M., and Wang, P.L., Synthesis of monodispersed fine hafnium diboride powders using carbo/borothermal reduction of hafnium dioxide, J. Am. Ceram. Soc., 2008, vol. 91, no. 8, pp. 2709–2712.

    CAS  Article  Google Scholar 

  6. 6

    Brown-Shaklee, H.J., Fahrenholtz, W.G., and Hilmas, G.E., Densification behavior and thermal properties of hafnium diboride with the addition of boron carbides, J. Am. Ceram. Soc., 2012, vol. 95, no. 6, pp. 2035–2043.

    CAS  Article  Google Scholar 

  7. 7

    Guo, S., Liu, T., Ping, D.H., and Nishimura, T., Enhanced high-temperature strength of HfB2–SiC composite up to 1600°C, J. Eur. Ceram. Soc., 2017, vol. 38, no. 4, pp. 1152–1157.

    Article  Google Scholar 

  8. 8

    Tu, R., Li, N., Li, Q., Zhang, S., Zhang, L., and Goto, T., Effect of microstructure on mechanical, electrical and thermal properties of B4C–HfB2 composites prepared by arc melting, J. Eur. Ceram. Soc., 2016, vol. 36, no. 16, pp. 3929–3937.

    CAS  Article  Google Scholar 

  9. 9

    Zou, J., Zhang, G.J., Kan, Y.M., and Ohji, T., Pressureless sintering mechanisms and mechanical properties of hafnium diboride ceramics with pre-sintering heat treatment, Scr. Mater., 2010, vol. 62, no. 3, pp. 159–162.

    CAS  Article  Google Scholar 

  10. 10

    Zapata-Solvas, E., Jayaseelan, D.D., Lin, H.T., Brown, P., and Lee, W.E., Mechanical properties of ZrB2- and HfB2-based ultra-high temperature ceramics fabricated by spark plasma sintering, J. Eur. Ceram. Soc., 2013, vol. 33, no. 7, pp. 1373–1386.

    CAS  Article  Google Scholar 

  11. 11

    Venugopal, S., Paul, A., Vaidhyanathan, B., et al., Synthesis and spark plasma sintering of sub-micron HfB2: effect of various carbon sources, J. Eur. Ceram. Soc., 2014, vol. 34, no. 6, pp. 1471–1479.

    CAS  Article  Google Scholar 

  12. 12

    Gürcan, K. and Ayas, E., In-situ synthesis and densification of HfB2 ceramics by the spark plasma sintering technique, Ceram. Int., 2017, vol. 43, no.4, pp. 3547–3555.

    Article  Google Scholar 

  13. 13

    Cutler, R.A. and Rigtrup, K.M., Synthesis, sintering, microstructure, and mechanical properties of ceramics made by exothermic reaction, J. Am. Ceram. Soc., 1992, vol. 75, no. 1, pp. 36–43.

    CAS  Article  Google Scholar 

  14. 14

    Wang, Z., Liu, X., Xu, B.S., and Wu, Z., Fabrication and properties of HfB2 ceramics based on micron and submicron HfB2 powders synthesized via carbo/borothermal reduction of HfO2 with B4C and carbon, Int. J. Refract. Met. Hard Mater., 2015, vol. 51, pp. 130–136.

    CAS  Article  Google Scholar 

  15. 15

    Liang, H., Guan, S., Li, X., Liang, A., Zeng, Y., Liu, C., Chen, H., Lin, W., He, D., Wang, L., and Peng, F., Microstructure evolution, densification behavior and mechanical properties of nano-HfB2 sintered under high pressure, Ceram. Int., 2019, vol. 45, no. 6, pp. 7885–7893.

    CAS  Article  Google Scholar 

  16. 16

    Guo, W.M., Yang, Z.G., and Zhang, G.J., Synthesis of submicrometer HfB2 powder and its densification, Mater. Lett., 2012, vol. 83, pp. 52–55.

    CAS  Article  Google Scholar 

  17. 17

    Jalaly, M., Gotor, F.J., and Sayagués, M.J., Self-propagating mechanosynthesis of HfB2 nanoparticles by a magnesiothermic reaction, J. Am. Ceram. Soc., 2018, vol. 101, no. 4, pp. 1412–1419.

    CAS  Article  Google Scholar 

  18. 18

    Venugopal, S., Jayaseelan, D.D., Paul, A., Vaidhyanathan, B., Binner, J.G.P., and Brown, P.M., Screw dislocation assisted spontaneous growth of HfB2 tubes and rods, J. Am. Ceram. Soc., 2015, vol. 98, no. 7, pp. 2060–2064.

    CAS  Article  Google Scholar 

  19. 19

    Dub, S.N., Goncharov, A.A., Ponomarev, S.S., Filippov, V.B., Tolmacheva, G.N., and Agulov, A.V., Mechanical properties of HfB2.7 nanocrystalline thin films, J. Superhard Mater., 2011, vol. 33, no. 3, pp. 151–158.

    Article  Google Scholar 

  20. 20

    Wang, L.B., Zhang, K.L., Pan, H.L., Wang, L., Wang, D., Dai, W., Qin, H., Li, G., and Zhang, J., 2D molybdenum nitride nanosheets as anode materials for improved lithium storage, Nanoscale, 2018, vol. 10, no. 40, pp. 18936–18941.

    CAS  Article  Google Scholar 

  21. 21

    Dai, W.C., Lu, L.J., Han, Y.X., Wang, L., Wang, J., Hu, J., Ma, C., Zhang, K., and Mei, T., Facile synthesis of Mo2C nanoparticles from waste polyvinyl chloride, ACS Omega, 2019, vol. 4, pp. 4896–4900.

    CAS  Article  Google Scholar 

  22. 22

    Wang, L.B., Xian, J., Zhang, L., Liu, W., Qin, H., Zhou, Q., and Qian, Y., One-step solid state reaction for the synthesis of ternary nitrides Co3Mo3N and Fe3Mo3N, Inorg. Chem. Front., 2017, vol. 4, no. 12, pp. 2055–2058.

    CAS  Article  Google Scholar 

  23. 23

    Wang, L.B., Tang, K.B., Zhu, Y.C., Li, Q., Zhu, B., Wang, L.C., Si, L., and Qian, Y., Solid state synthesis of a new ternary nitride MgMoN2 nanosheets and micromeshes, J. Mater. Chem., 2012, vol. 22, no. 29, pp. 14559–14564.

    CAS  Article  Google Scholar 

  24. 24

    Wang, L.B., Zhao, D.J., Lu, J.J., Liu, W., and Zhou, Q., Solid-state synthesis of magnetic properties of rhombohedral phase Mg2SiNi3, Nanoscale, 2018, vol. 109, no. 2, pp. 177–180.

    CAS  Google Scholar 

  25. 25

    Wang, L.B., Bao, K.Y., Lou, Z.S., Liang, G., and Zhou, Q., Chemical synthesis of germanium nanoparticles with uniform size as anode materials for lithium ion batteries, Dalton Trans., 2016, vol. 45, no. 7, pp. 2814–2817.

    Article  Google Scholar 

  26. 26

    Wang, L.B., Cheng, Q.L., Qin, H.F., Li, Z., Lou, Z., Lu, J., Zhang, J., and Zhou, Q., Synthesis of silicon carbide nanocrystals from waste polytetrafluoroethylene, Dalton Trans., 2017, vol. 46, no. 9, pp. 2756–2759.

    CAS  Article  Google Scholar 

  27. 27

    Wang, L.B., Li, Q.W., Mei, T., Shi, L., Zhu, Y., and Qian, Y., A thermal reduction route to nanocrystalline transition metal carbides from waste polytetrafluoroethylene and metal oxides, Mater. Chem. Phys., 2012, vol. 137, no. 1, pp. 1–4.

    Article  Google Scholar 

  28. 28

    Wang, L.B., Dai, W., Zhang, K.L., Mei, T., Zhuang, H., Song, S., Yang, S., Zhou, Q., and Qian, Y., One step conversion of waste polyethylene to Cr3C2 nanorods and Cr2AlC particles under mild conditions, Inorg. Chem. Front., 2018, vol. 5, no. 11, pp. 2893–2897.

    CAS  Article  Google Scholar 

  29. 29

    Wang, L.B., Si, L.L., Zhu, Y.C., and Qian, Y., Solid-state reaction synthesis of ZrC from zirconium oxide at low temperature, Int. J. Refract. Met. Hard Mater., 2013, vol. 38, pp. 134–136.

    Article  Google Scholar 

  30. 30

    Wang, L.B., Lin, N., Zhou, J.B., Zhu, Y., and Qian, Y., Silicon nanoparticles obtained via a low temperature chemical “metathesis” synthesis route and their lithium-ion battery properties, Chem. Commun., 2015, vol. 51, no. 12, pp. 2345–2348.

    CAS  Article  Google Scholar 

  31. 31

    Wang, L.B., Li, Q.W., Zhu, Y.C., and Qian, Y., Magnesium-assisted formation of metal carbides and nitrides from metal oxides, Int. J. Refract. Met. Hard Mater., 2011, vol. 31, pp. 288–292.

    CAS  Article  Google Scholar 

  32. 32

    Wang, L.B., Shi, L., Li, Q.W., Si, L., Zhu, Y., and Qian, Y., Low temperature solid-state synthesis of nanocrystalline gallium nitride, Mater. Res. Bull., 2012, vol. 47, no. 11, pp. 3920–3922.

    CAS  Article  Google Scholar 

  33. 33

    Wang, L.B., Mei, T., Liu, W.Q., and Zhou, Q., A simple pyrolysis route to synthesize carbon nanofibers in molten zinc chloride as an anode material for Li ion batteries, J. Phys. Chem. C, 2016, vol. 120, no. 10, pp. 5326–5330.

    CAS  Article  Google Scholar 

  34. 34

    Wang, L.B., Pan, Y.X., Shen, Q.L., Zhang, J., Bao, K., Lou, Z., Zhao, D., and Zhou, Q., Sulfur-assisted synthesis of indium nitride nanoplates from indium oxide, RSC Adv., 2016, vol. 6, no. 100, pp. 98153–98156.

    CAS  Article  Google Scholar 

  35. 35

    Wang, L.B., Zhang, F., Dai, W. C., Cheng, Q., Zhang, K., Wu, Y., Xiong, Y., Lu, Y., Wu, Q., and He, X., The synthesis of zirconium carbide nanoparticles by lithium thermal reduction of zirconium dioxide and waste plastic, Chem. Lett., 2019, vol. 48, no. 6, pp. 604–606.

    CAS  Article  Google Scholar 

Download references

Funding

This work was supported by Natural Science Foundation of Jiangsu Province (grant no. BK20160292), National Natural Science Foundation of China (grant no. 21701061), and the Changzhou Sci&Tech Program (grant nos. CJ20179015 and CJ20200041).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Liangbiao Wang or Kailong Zhang.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liangbiao Wang, Cheng, Q., Zhao, D. et al. Solid-State Synthesis and Characterization of Hafnium Diboride Nanoparticles. J. Superhard Mater. 42, 396–400 (2020). https://doi.org/10.3103/S106345762006012X

Download citation

Keywords:

  • solid state route
  • X-ray diffraction
  • hafnium diboride
  • nanoparticles
  • chemical synthesis