Skip to main content
Log in

High Pressure Effects on Structural, Elastic and Thermodynamic Properties of Tantalum Mononitride

  • Production, Structure, Properties
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

The pressure effects on the structural, elastic and thermodynamic properties of tantalum mononitride in WC-type phase (i.e. WC–TaN) are investigated by the first-principles plane wave pseudo-potential density functional theory method and the quasi-harmonic Debye model. The obtained equilibrium structure parameters and ground state properties are in excellent agreement with the experimental and other theoretical results. The calculations of the phonon dispersion curve and the density of phonon states verify that the WC–TaN is dynamically stable. A full elastic tensor and anisotropies behavior of the WC–TaN is also evaluated and discussed in the wide pressure range. The results show that WC–TaN is elastic anisotropy and mechanically stable up to 100 GPa, and the compression along c-axis direction is more difficult than along a-axis. The obtained superior mechanical properties show that WC–TaN is a promising candidate structure to be one of the ultra-incompressible and hard materials. Finally, by using the quasi-harmonic approximation model, we predicted the thermodynamic properties of WC–TaN under pressure and temperature. The heat capacity CV, Debye temperature θ, the thermal expansion α and the Grüneisen constant γ are obtained successfully in the ranges of 0–100 GPa and 0–2000 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Liu, A.Y. and Cohen, M.L., Prediction of new low compressibility solids, Science, 1989, vol. 245, pp. 841–842.

    Article  CAS  PubMed  Google Scholar 

  2. He, J.L., Guo, L.C., Yu, D.L., Liu, R.P., Tian, Y.J. and Wang, H.T., Hardness of cubic spinel Si3N4, Appl. Phys. Lett., 2004, vol. 85, pp. 5571–5573.

    Article  CAS  Google Scholar 

  3. Occelli, F., Loubeyre, P., and Toullec, R.L., Properties of diamond under hydrostatic pressures up to 140 GPa, Nat. Mater., 2003, vol. 2, pp. 151–154.

    Article  CAS  PubMed  Google Scholar 

  4. Chung, H.Y., Weinberger, M.B., Levine, J.B., Kavner, A., Yang J,M., Tolbert, S.H., and Kaner, R.B., Synthesis of Ultra-incompressible superhard rhenium diboride at ambient pressure, Science, 2007, vol. 316, pp. 436–439.

    Article  CAS  PubMed  Google Scholar 

  5. Liang, Y., Li, C., Guo, W., and Zhang, W., First-principles investigation of technetium carbides and nitrides, Phys. Rev. B, 2009, vol. 79, pp. 024111–024115.

    Article  CAS  Google Scholar 

  6. Christensen, A.N. and Lebech, B., A reinvestigation of the structure of ε-tantalum nitride, Acta Crystallogr. B, 1978, vol. 34, pp. 261–263.

    Article  Google Scholar 

  7. Brauer, G., Mohr, E., Neuhaus, A., and Skokan, A., ϑ-TaN, eine hochdruckform von tantalnitrid, Monatsh. Chem., 1972, vol. 103, pp. 794–798.

    Article  CAS  Google Scholar 

  8. Ensinger, W., Kiuchi, M., and Satou, M., Low-temperature formation of metastable cubic tantalum nitride by metal condensation under ion irradiation, J. Appl. Phys., 1995, vol. 77, pp. 6630–6636.

    Article  CAS  Google Scholar 

  9. Kim, T.E., Han, S., Son, W.J., Cho, E., Ahn, H.S., and Shin, S., Phase stability and electronic structures of stoichiometric tantalum mononitrides, Comput. Mater. Sci., 2008, vol. 44, pp. 577–580.

    Article  CAS  Google Scholar 

  10. Yan, H.Y., Dou, C.S., Zhang, M.G., and Wang, H., Hexagonal high-pressure phase of tantalum mononitride predicted from first principles, J. Appl. Phys., 2013, vol. 113, pp. 083502.

    Article  CAS  Google Scholar 

  11. Isaev, E.I., Simakm, S.I., Abrikosov, I.A., Ahuja, R., Vekilov, Yu. Kh., Katsnelson, M.I., Lichtenstein, A.I., and Johansson, B., Phonon related properties of transition metals, their carbides, and nitrides: A first-principles study, J. Appl. Phys., 2007, vol. 101, pp. 123519.

    Article  CAS  Google Scholar 

  12. Friedrich, A., Morgenroth, W., Bayarjargal, L., Juarez-Arellano, E. A., Winkler, B., and Konôpková, Z., In situ study of the high pressure high-temperature stability field of TaN and of the compressibilities of ϑ-TaN and TaON, High Press. Res., 2013, vol. 33, pp. 633–641.

    Article  CAS  Google Scholar 

  13. Zhao, E.J. and Wu, Z.J., Electronic and mechanical properties of 5d transition metal mononitrides via first principles, Solid State. Chem., 2008, vol. 181, pp. 2814–2827.

    Article  CAS  Google Scholar 

  14. Li, D., Tian, F.B., Duan, D.F., Duan, D.F., Bao, K., Chu, B.H., Sha, X,J., Liu, B.B., and Cui, T., Mechanical and metallic properties of tantalum nitrides from first-principles calculations, RSC Adv., 2014, vol. 4, pp. 10133–10139.

    Article  CAS  Google Scholar 

  15. Hitoshi, Y., Fumio, K., Takashi, T., Naohisa, H., Yasuo, O., and Takumi K., High-pressure synthesis and compressive behavior of tantalum nitride, J. Appl. Phys., 2014, vol. 115, pp. 103520.

    Article  CAS  Google Scholar 

  16. Weng, H., Fang, C., Fang, Z., and Dai, X., Topological semimetals with triply degenerate nodal points in θ-phase tantalum nitride, Phys. Rev. B, 2016, vol. 93, pp. 241202.

    Article  Google Scholar 

  17. Zhao, E.J., Hong, B., Meng, J., and Wu, Z.J., First principles investigation on the ultra-incompressible and hard TaN, J. Comput. Chem., 2009, vol. 30, pp. 2358–2363.

    CAS  PubMed  Google Scholar 

  18. Cao, C.L., Hou, Z.F., and Yuan, G., First-principles study of the structural stability and electronic structures of TaN, Phys. Stat. Sol., 2008, vol. 8, 1580–1585.

    Article  CAS  Google Scholar 

  19. Li, J.F., Wang, X.L., Liu, K., Li, D.Y., and Chen, L., Crystal structures, mechanical and electronic properties of tantalum monocarbide and mononitride, J. Superhard Mater., 2011, vol. 33, pp. 173–178.

    Article  Google Scholar 

  20. Ren, F.Z. and Wang, Y.X., Pressure-induced phase transition of tantalum mononitride, Thin Solid. Films, 2011, vol. 519, pp. 3954–3958.

    Article  CAS  Google Scholar 

  21. Segall, M.D., Lindan, P.J.D., Probert, M.J., Pickard, C.J., Hasnip, P.J., Clark, S.J., and Payne, M.C., First-principles simulation: ideas, illustrations and the CASTEP code, J. Phys. Condens. Matter., 2002, vol. 14, pp. 2717–2744.

    Article  CAS  Google Scholar 

  22. Vanderbilt, D., Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B, 1990, vol. 41, pp. 7892–7895.

    Article  CAS  Google Scholar 

  23. Vosko, S.H., Wilk, L., and Nussair, M., Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Can. J. Phys., 1980, vol. 58, pp. 1200–1211.

    Article  CAS  Google Scholar 

  24. Pfrommer, B.G., Côté, M., Louie, S.G., and Cohen, M.L., Relaxation of crystals with the Quasi-Newton method, J. Comp. Physiol., 1997, vol. 131, pp. 233–240.

    Article  CAS  Google Scholar 

  25. Christopoulos, S.R., Filippatos, P.P., Hadi, M.A., Kelaidis, N., Fitzpatrick, M.E., and Chroneos, A., Intrinsic defect processes and elastic properties of Ti3AC2 (A = Al, Si, Ga, Ge, In, Sn) MAX phases, J. Appl. Phys., 2018, vol. 123, pp. 025103.

    Article  CAS  Google Scholar 

  26. Wang, P., Kumar, R., Sankaran, E.M., Qi, X.T, Zhang, X.Y, Popov, D., Cornelius, A.L., Li, B.S., Zhao, Y.S., and Wang, L.P., Vanadium diboride (VB2) synthesized at high pressure: elastic, mechanical, electronic, and magnetic properties and thermal stability, Inorganic Chem., 2018, vol. 57, pp. 1096–1105.

    Article  CAS  Google Scholar 

  27. Wang, J., Yip, S., Phillpot, S.R., and Wolf, D., Mechanical instabilities of homogeneous crystals, Phys. Rev. B, 1995, vol. 52, pp. 12627–12635.

    Article  CAS  Google Scholar 

  28. Wallace, D.C., Thermodynamics of Crystals, New York: Wiley, 1972.

    Book  Google Scholar 

  29. Karki, B.B., Ackland, G.J., and Crain, J., Elastic instabilities in crystals from ab initio stress-strain relations, J. Phys. Condens Matter, 1997, vol. 9, pp. 8579–8589.

    Article  CAS  Google Scholar 

  30. Barron, T.H.K. and Klein, M.L., Second-order elastic constants of a solid under stress, Proc. Phys. Soc., 1965, vol. 85, pp. 523–532.

    Article  Google Scholar 

  31. Blanco, M.A., Francisco, E., and Luana, Y, GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model, Comput. Phys. Commun., 2004, vol. 158, pp. 57–72.

    Article  CAS  Google Scholar 

  32. Liu, K., He, D.W., Zhou, X.L., Wang, H.M., Lu, T.C., and Chang, J., Method of preparation and thermodynamic properties of transparent Y3Al5O12 nanoceramics, J. Therm. Anal. Calorim., 2013, vol. 111, pp. 289–294.

    Article  CAS  Google Scholar 

  33. Gao, X., Zhou, M., Cheng, Y., and Ji, G., First-principles study of structural, elastic, electronic and thermodynamic properties of topological insulator Bi2Se3 under pressure, Philos. Mag., 2016, vol. 96, pp. 208–222.

    Article  CAS  Google Scholar 

  34. Blanco, M.A., Pendás, A.M., Francisco, E., Recio, J.M., and Franco, R., Thermodynamical properties of solids from microscopic theory: applications to MgF2 and Al2O3, J. Mol. Struct. (Theochem.), 1996, vol. 368, pp. 245–255.

    Article  CAS  Google Scholar 

  35. Flórez, M., Recio, J.M., Francisco, E., Blanco, M.A., and Pendás, A.M., First-principles study of the rocksalt-cesium chloride relative phase stability in alkali halides, Phys. Rev. B, 2002, vol. 66, pp. 144112–144120.

    Article  CAS  Google Scholar 

  36. Mashimo, T. and Tashiro, S., Synthesis of the WC-type tantalum nitride by mechanical alloying, J. Mater. Sci. Lett., 1994, vol. 13, pp. 174–176.

    Article  CAS  Google Scholar 

  37. Mashimo, T., Tashiro, S., Nishida, M., Miyahara, K., and Eto, E., B1-type and WC-type phase bulk bodies of tantalum nitride prepared by shock and static compressions, Physica B, 1997, vol. 239, pp. 13–15.

    Article  CAS  Google Scholar 

  38. Birch, F., Finite elastic strain of cubic crystals, Phys. Rev., 1947, vol. 71, pp. 809–824.

    Article  CAS  Google Scholar 

  39. Wang, Y.X., Elastic and electronic properties of TcB2 and superhard ReB2: First-principles calculations, Appl. Phys. Lett., 2007, vol. 91, pp. 101904–101907.

    Article  CAS  Google Scholar 

  40. Wang, Y.X., Arai, M., and Sasaki, T., Marcasite osmium nitride with high bulk modulus: First-principles calculations, Appl Phys Lett, 2007, vol. 90, pp. 061922–061925.

    Article  CAS  Google Scholar 

  41. Wu, Z.J., Zhao, E.J., Xiang, H.P., Hao, X.F., Liu, X.J., and Meng, J., Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles, Phys. Rev. B, 2007, vol. 76, pp. 054115–054130.

    Article  CAS  Google Scholar 

  42. Yu, R., Zhan, Q., and Zhang, X.F., Elastic stability and electronic structure of pyrite type PtN2: A hard semiconductor, Appl. Phys. Lett., 2006, vol. 88, pp. 051913–051916.

    Article  CAS  Google Scholar 

  43. Liang, Y.C. and Zhang, B., Mechanical and electronic properties of superhard ReB2, Phys. Rev. B, 2007, vol. 76, pp. 132101–132105.

    Article  CAS  Google Scholar 

  44. Smirnov, N.A., Ab initio calculations of the thermodynamic properties of LiF crystal, Phys. Rev. B, 2011, vol. 83, pp. 014109–014113.

    Article  CAS  Google Scholar 

  45. Poirier, J. P., Introduction to the Physics of the Earth’s Interior, Cambridge University Press, New York, 1991.

    Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 11304211 and 11504304), the Construction Plan for Scientific research Innovation Team of Universities in Sichuan Province (No. 12TD008), the Open Project of State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials (Grant No. 15zxfk08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Chang.

Additional information

The text was submitted by the authors in English.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, J., Ge, N., Liu, K. et al. High Pressure Effects on Structural, Elastic and Thermodynamic Properties of Tantalum Mononitride. J. Superhard Mater. 41, 310–320 (2019). https://doi.org/10.3103/S1063457619050034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457619050034

Keywords

Navigation