Journal of Superhard Materials

, Volume 39, Issue 2, pp 143–146 | Cite as

The influence of aqueous armor composition for TNT–RDX explosive charge on the yield and quality of detonation nanodiamond and diamond-containing soot in detonation synthesis

Letters to the Editor
  • 68 Downloads

Abstract

The paper addresses the detonation synthesis factors that govern the yield of nanodiamonds and diamond-containing soot, and their quality. The effect of such an important factor as the composition of armor (shell) of the explosive charge is described. The authors discuss three different methods of initiating an explosive charge, which involve the use of gas, water, or ice, respectively, and their advantages and disadvantages. The influence of the composition of mixtures of aqueous solutions of various substances (organic and inorganic) on the outcome of the detonation synthesis is shown in detail.

Keywords

detonation synthesis armoring diamond-containing soot detonation nanodiamonds TNT and RDX mixture urotropine incombustible impurities explosion chamber 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Danilenko, V.V., Vzryv: fizika, tekhnika, tekhnologiya (Explosion: Physics, Equipment, Technology), Moscow: Energoatomizdat, 2010.Google Scholar
  2. 2.
    Dolmatov, V.Yu. Detonatsinnye nanoalmazy. Poluchenie, svoistva, primenenie (Detonation Nanodiamonds. Production, Properties, Application), St.Petersburg: NPO Professional, 2011.Google Scholar
  3. 3.
    Dolmatov, V.Yu., Assessment of applicability of explosive charges for synthesis of detonation nanodiamonds, J. Superhard Mater., 2016, vol. 38, no. 5, pp. 373–376.CrossRefGoogle Scholar
  4. 4.
    Lyamkin, A.I., Petrov, E.A., Ershov, A.P., Sakovich, G.V., Staver, A.M., and Titov, V.M., Production of diamonds from explosives, DAN SSSR, 1988, vol. 302, no. 3, pp. 611–613.Google Scholar
  5. 5.
    Petrov, E.A., Sakovich, G.V., and Brylyakov, P.M., Conditions for preserving diamonds in the process of detonation synthesis, DAN SSSR, 1990, vol. 313, no. 4, pp. 862–863.Google Scholar
  6. 6.
    Istomin, Yu.A. and Istomin, V.Yu., USSR Inventor’s Certificate no. 1 644 996, 1991.Google Scholar
  7. 7.
    Savvakin, G.I., Structural defects formed in ultradispersed diamond (UDD) during detonation of carbon-containing explosives, and the influence of the defects on the process of sintering of diamonds under pressure, V Vsesoyuznoe soveshchanie po detonatsii. Sb. dokl. (Proc. V All-Union Conf. on Detonation), Krasnoyarsk, 1991, vol. 2, pp. 254–258.Google Scholar
  8. 8.
    Stavrev, S.Y., Lazarov, S.B., Stoev, K.L., Markov, L.G., and Ivanov, V.I, USPatent 5 353 708, 1994.Google Scholar
  9. 9.
    Dolmatov, V.Yu. and Veretennikova, M.V., RF Patent 2 230 702, Byul. Izobret., 2004, no. 7.Google Scholar
  10. 10.
    Lobodko, B.G. and Lyubyatinskii, S.N., Reaction zones of detonating solid explosives, Fiz. Goren. Vzryva, 2000, vol. 36, no. 6, pp. 45–64.Google Scholar
  11. 11.
    Dolmatov, V.Yu., Sushchev, V.G., and Marchukov, V.A., RF Patent 2 109 683, 1996.Google Scholar
  12. 12.
    Dolmatov, V.Yu., RF Patent 2 359 902, Byul. Izobret., 2007, no. 18.Google Scholar
  13. 13.
    Dolmatov, V.Yu., RF Patent 2 348 580, 2007.Google Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  1. 1.Special Design-Technology Bureau (FSUE SDTB) Tekhnolog Federal State Unitary EnterpriseSt. PetersburgRussian Federation
  2. 2.Carbodeon Ltd. OyVantaaFinland

Personalised recommendations