Journal of Superhard Materials

, Volume 39, Issue 2, pp 129–133 | Cite as

Formation of flat surfaces of optoelectronic components in diamond polishing

  • Yu. D. Filatov
  • V. I. Sidorko
  • S. V. Kovalev
  • A. G. Vetrov
Investigation of Machining Processes


Based on the physical-statistical model of formation of workpiece material debris particles in diamond polishing, an analysis of removal rate and form accuracy has been performed for flat surfaces of optoelectronic components made of quartz, aluminum nitride, and gallium nitride. The most efficient values of kinematic parameters of machine tool setting have been defined to achieve the required shape-generation accuracy. The paper provides some findings of the experimental verification of calculated data on the removal rate in polishing and the form deviation of the machined surfaces.


diamond polishing removal rate form deviation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fahnle, O.W., Wons, T., Koch, E., et al., ITIRM as a tool for qualifying polishing processes, Appl. Optics, 2002, vol. 41, no. 19/1, pp. 4036–4038.CrossRefGoogle Scholar
  2. 2.
    Ouma, D.O., Boning, D.S., Chung, J.E., et al., Characterization and modeling of oxide chemical-mechanical polishing using planarization length and pattern density concepts, IEEE Transactions on Semiconductor Manufacturing, 2002, vol. 15, no. 2, pp. 232–243.CrossRefGoogle Scholar
  3. 3.
    Vukkadala, P., Turner, K.T., and Sinha, J.K., Impact of wafer geometry on CMP for advanced nodes, J. Electrochem. Soc., 2011, vol. 158, no. 10, pp. 1002–1009.CrossRefGoogle Scholar
  4. 4.
    Filatov, Yu.D., Filatov, O.Yu., Monteil, G., et al., Bound-abrasive grinding and polishing of surfaces of optical materials, Optical Eng., 2011, vol. 50, no. 6, art. 063401.CrossRefGoogle Scholar
  5. 5.
    Filatov, Yu.D. and Sidorko, V.I., A statistical approach to wear of surfaces of nonmetallic workpiece in polishing, Sverkhtverdye Materialy, 2005, no. 1, pp. 58–66 [J. Superhard Mater., 2005,no. 1].Google Scholar
  6. 6.
    Filatov, Yu. and Sidorko V., Formation of flat optical surfaces in polishing, Jemna Mechanika a Optika, 2009, no. 9, pp. 239–243.Google Scholar
  7. 7.
    Filatov, O.Yu., Sidorko, V.I., Kovalev, S.V., Filatov, Yu.D., and Vetrov, A.G., Material removal rate in polishing anisotropic monocrystalline materials for optoelectronics, J. Superhard Mater., 2016, vol. 38, no. 2, pp. 123–131.CrossRefGoogle Scholar
  8. 8.
    Galashev, A.Y., Computer study of the Raman spectra and infrared optical properties of gallium nitride and gallium arsenic nanoparticles with SiO2 core and shell, J. Nanopart. Res., 2014, no. 16, pp. 2351–2368.CrossRefGoogle Scholar
  9. 9.
    Crystal quartz, Almaz Optics, Inc. (Quartz, crystal quartz, crystalline quartz), Quartz.htmGoogle Scholar
  10. 10.
    Properties of the III-nitride semiconductors. The semiconductors–information., uk/nitrides.htmGoogle Scholar
  11. 11.
    Davydov, V.Yu., Kitaev, Yu.E., Goncharuk, I.N., et al., Phonon dispersion and Raman scattering in hexagonal GaN and AlN, Phys. Rev. B, 1998, vol. 58, no. 19, pp. 12899–12907.CrossRefGoogle Scholar
  12. 12.
    Harima, H., Properties of GaN and related compounds studied by means of Raman scattering, J. Phys.: Condens. Matter., 2002, vol. 14, pp. 967–993.Google Scholar
  13. 13.
    Quay, R., Gallium Nitride Electronics, Springer Science & Business Media, 2008.Google Scholar
  14. 14.
    Filatov, O.Yu., Vetrov, A.G., Sidorko, V.I., Filatov, Yu.D., and Kovalev, S.V., A mechanism of diamond-abrasive finishing of monocrystalline silicon carbide, J. Superhard Mater., 2013, vol. 35, no. 5, pp. 303–308.CrossRefGoogle Scholar
  15. 15.
    Filatov, Yu.D., Vetrov, A.G., Sidorko, V.I., Filatov, O.Yu., et al., Polishing of optoelectronic components made of monocrystalline silicon carbide, J. Superhard Mater., 2015, vol. 37, no. 1, pp. 48–56.CrossRefGoogle Scholar
  16. 16.
    Filatov, Yu.D., Filatov, O.Yu., Monteil, G., et al., Bound-abrasive grinding and polishing of surfaces of optical materials, Proc. SPIE, 2010, vol. 7786, art. 778613.CrossRefGoogle Scholar
  17. 17.
    Filatov, Yu.D. and Rogov, V.V., A cluster model of fatigue wear mechanism of SiO2-containing materials in polishing with tools made of bound ceria-based polishing powders. Part 1, Sverkhtverdye Materaily, 1994, no. 3, pp. 40–43 [J. Superhard Mater., 1994, no. 3].Google Scholar
  18. 18.
    Filatov, Yu.D., The mechanism of the surface microrelief formation in glass polishing, Sverkhtverdye Materialy, 1991, no. 5, pp. 61–65 [J. Superhard Mater., 1991, no. 5].Google Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • Yu. D. Filatov
    • 1
  • V. I. Sidorko
    • 1
  • S. V. Kovalev
    • 1
  • A. G. Vetrov
    • 1
  1. 1.Bakul Institute for Superhard MaterialsNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations