Journal of Superhard Materials

, Volume 39, Issue 2, pp 117–121 | Cite as

Facile and scalable synthesis of Ti5Si3 nanoparticles via solid-state route in an autoclave

  • W. Mao
  • K. Bao
  • F. Cao
  • L. Ye
  • H. Xie
  • B. Li
  • W. Wang
Production, Structure, Properties


A novel method of the synthesis of titanium silicide nanoparticles via solid-state route in an autoclave at 700°C is reported. The reaction of titanium silicide could be described briefly as: 5TiO2 + 3Si + 20Li = Ti5Si3 + 10Li2O. XRD pattern indicated that the product was hexagonal Ti5Si3. The Ti5Si3particle size (about 20–40 nm) is confirmed by the TEM images. Furthermore, the thermal stability and oxidation resistance of the titanium silicide nanoparticles were also investigated.


titanium alloys nanocrystalline materials X-ray diffraction (XRD) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andreiev, I.V., Effect of the thermal treatment of the initial tungsten-containing raw material on the structure and properties of WC–Co type hard alloys with particularly fine-grained structures, J. Superhard Mater., 2015, vol. 37, pp. 417–421.CrossRefGoogle Scholar
  2. 2.
    Chen, L., Guo, H., Fujita, T., Hirata, A., Zhang, W., Inoue, A., and Chen M., Nanoporou PdNi bimetallic catalyst with enhanced electrocatalytic performances for electro-oxidation and oxygen reduction reactions, Adv. Funct. Mater., 2011, vol. 21, pp. 4364–4369.CrossRefGoogle Scholar
  3. 3.
    Goncharov, A.A., Dub, S.N., Agulov, A.V., and Petukhov V.V., Structure, composition, and mechanical properties of thin films of transition metals diborides, J. Superhard Mater., 2015, vol. 37, pp. 422–428.Google Scholar
  4. 4.
    Kasraee, K., Tayebifard, A., and Salahi, E., Effect of substitution of Si by Al on microstructure and synthesis behavior of Ti5Si3 based alloys fabricated by mechanically activated self-propagating high-temperature synthesis, Adv. Powder Technol., 2015, vol. 25, pp. 885–890.CrossRefGoogle Scholar
  5. 5.
    Liu, Y.F., Zhou, Y.L., and Zhang, Q., Microstructure and dry sliding wear behavior of plasma transferred arc clad Ti5Si3 reinforced intermetallic composite coatings. J. Alloys Comp., 2014, vol. 591, pp. 251–258.Google Scholar
  6. 6.
    Yeh, C.L., Wang, H.J., and Chen, W.H., A comparative study on combustion synthesis of Ti–Si compounds, J. Alloys Comp., 2008, vol. 200, pp. 450–456.Google Scholar
  7. 7.
    Xu, J., Liu, L., Li, Z., Munroe, P., and Xie, Z.H., Niobium addition enhancing the corrosion resistance of nanocrystalline Ti5Si3 coating in H2SO4 solution, Acta Materialia, 2014, vol. 63, pp. 245–260.CrossRefGoogle Scholar
  8. 8.
    Li, C.L., Zhan, Y.Z., Mo, Y.F., and She, J., In situ synthesized Ti5Si3/Ti–Mo lightweight structural composites. Int. J. Refract. Met. Hard Mater., 2013, vol. 41, pp. 432–436.Google Scholar
  9. 9.
    Scabarozi, T.H., Hettinger, J.D., Lofland, S.E., Lu, J., Hultman, L., Jensen, J., and Eklund, P., Epitaxial growth and electrical-transport properties of Ti7Si2C5 thin films synthesized by reactive sputter-deposition, Scripta Mater., 2011, vol. 65, pp. 811–814.CrossRefGoogle Scholar
  10. 10.
    Ran, H., Niu, J., Song, B., Wang, X., Feng, P., Wang, J., Ge, Y., and Farid, A., Microstructure and properties of Ti5Si3-based porous intermetallic compounds fabricated via combustion synthesis, J. Alloys Comp., 2014, vol. 612, pp. 337–342.CrossRefGoogle Scholar
  11. 11.
    Wang, H.Y., Lü, S.J., Xiao, W., Liu, G.J., Wang, J.G., Jiang, Q.C., and Zhao, Y., Reaction pathway of combustion synthesis of Ti5Si3 in Cu–Ti–Si system, J. Am. Ceram. Soc., 2013, vol. 96, no. 3, pp. 950–956.CrossRefGoogle Scholar
  12. 12.
    Yeh, C.L., Chen, W.H., and Hsu, C.C., Formation of titanium silicides Ti5Si3 and TiSi2 by self-propagating combustion synthesis, J. Alloys Comp., 2007, vol. 432, pp. 90–95.CrossRefGoogle Scholar
  13. 13.
    Liu, J., Bai Y., Chen P., Cui N., and Yin, H., Reaction synthesis of TiSi2 and Ti5Si3 by ball-milling and shock loading and their photocatalytic activities, Ibid., 2013, vol. 555, pp. 375–380.Google Scholar
  14. 14.
    Zou, X., Lu, X., Zhou, Z., Xiao, W., Zhong, Q., Li, C., and Ding, W., Electrochemical extraction of Ti5Si3 silicide from multicomponent Ti/Si-containing metal oxide compounds in molten salt, J. Mater. Chem. A, 2014, vol. 2, pp. 7421–7430.CrossRefGoogle Scholar
  15. 15.
    Huang, L.J., Wang, S., Geng, L., Kaveendran, B., and Peng, H.X., Low volume fraction in situ (Ti5Si3+Ti2C)/Ti hybrid composites with network microstructure fabricated by reaction hot pressing of Ti–SiC system, Compos. Sci. Technol., 2013, vol. 82, pp. 23–28.CrossRefGoogle Scholar
  16. 16.
    Yu, L., Lv, Y., Zhang, X., and Wang, H., Application of in situ chloride-generated route to Ti5Si3 nanowires from and on Si substrate, Mater. Lett. 2012, vol. 74, pp. 46–49.CrossRefGoogle Scholar
  17. 17.
    Park, J.B., Ham, J.S., Shin, M.S., and Park, H.K., Synthesis and electrochemical characterization of anode material with titanium–silicon alloy solid core/nanoporous silicon shell structures for lithium rechargeable batteries, J. Power Sources, 2015, vol. 299, pp. 537–543.CrossRefGoogle Scholar
  18. 18.
    Lin, H.K., Tzeng, Y.F., Wang, C.H., Tai, N.H., and Lin, I.N., Ti5Si3 nanowire and its field emission property, Chem. Mater., 2008, vol. 20, pp. 2429–2431.CrossRefGoogle Scholar
  19. 19.
    Zhang, Y., Geng, D.S., Liu, H., and Banis, M.N., Designed growth and characterization of radially aligned Ti5Si3 nanowire architectures, J. Phys. Chem. C., 2011, vol. 115, pp. 15885–15889.CrossRefGoogle Scholar
  20. 20.
    Park, K.L. and Hwang, S.K., Synthesis of Ti5Si3–Nb–C by electro-pressure sintering, Scripta Mater., 2001, vol. 44, pp. 9–16.CrossRefGoogle Scholar
  21. 21.
    Estruga, M., Girard, S.N., Ding, Q., Chen, L., Li, X., and Jin, S., Facile and scalable synthesis of Ti5Si3 nanoparticles in molten salts for metal–matrix nanocomposites, Chem. Commun., 2014, vol. 50, pp. 1454–1457.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • W. Mao
    • 1
  • K. Bao
    • 1
  • F. Cao
    • 1
  • L. Ye
    • 1
  • H. Xie
    • 1
  • B. Li
    • 1
  • W. Wang
    • 1
  1. 1.College of Chemistry and Pharmacy EngineeringNanyang Normal UniversityHenanP. R. China

Personalised recommendations