Skip to main content
Log in

Theoretical shear strength and the onset of plasticity in nanodeformation of cubic boron nitride

  • Production, Structure, Properties
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

The nanoindentation in the continuous stiffness measurement mode was used to investigate the onset of plasticity at the nanodeformation of cubic boron nitride (cBN). This technique allows us to reveal an elastic-plastic transition in the contact and to measure the yield strength of cBN at the nanoscale. An abrupt elastoplastic transition (a pop-in) was observed in the (111) cBN single crystal as a result of a homogeneous or heterogeneous nucleation of dislocations in the previously dislocations-free region under the contact. The analysis of the data obtained at the homogeneous nucleation of dislocations in the contact region made it possible to experimentally estimate the theoretical shear strength of cBN and its ideal (elastic) hardness. In a sample of the fine-grained cBN with a nanotwinned substructure a smooth elastoplastic transition was observed in consequence of the propagation and multiplication of already existing dislocations in the contact region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kelly, A., Strong solids, Oxford: Clarendon Press, 1973.

    Google Scholar 

  2. Berezhkova, G.V., Nitevidnye cristally (Wiskers), Moscow, Nauka, 1969.

    Google Scholar 

  3. Bei, H., Shim, S., George, E.P., et al., Compressive strengths of molybdenum alloy micropillars prepared using a new technique, Scripta Mater., 2007, vol. 57, pp. 397–400.

    Article  CAS  Google Scholar 

  4. Nadgorny, E.M., Dimiduk, D.M., and Uchic, M.D., Size effects in LiF micron-scale single crystals of low dislocation density, J. Mater. Res., 2008, vol. 23, pp. 2829–2835.

    Article  CAS  Google Scholar 

  5. Dehm, G., Miniaturized single-crystalline fcc metals deformed in tension: new insights in size dependent plasticity, Progress Mater. Sci., 2009, vol. 54, pp. 664–688.

    Article  CAS  Google Scholar 

  6. Michalske, T.A. and Houston, J.E., Dislocation nucleation at nano-scale mechanical contacts, Acta Mater., 1998, vol. 46, pp. 391–396.

    Article  CAS  Google Scholar 

  7. Zbib, A.A. and Bahr, D.F., Dislocation nucleation and source activation during nanoindentation yield points, Metal. Mater. Trans., 2007, vol. 38A, pp. 2249–2255.

    Article  CAS  Google Scholar 

  8. Zhao, X.F., Langford, R.M., Shapiro, I.P., and Xiao, P., Onset plastic deformation and cracking behavior of silicon carbide under contact load at room temperature, J. Am. Ceram. Soc., 2011, vol. 94, pp. 3509–3514.

    Article  CAS  Google Scholar 

  9. Wasmer, K., Gassilloud, R., and Michler, J., Analysis of onset of dislocation nucleation during nanoindentation and nanoscratching of InP, J. Mater. Res., 2012, vol. 27, pp. 320–329.

    Article  CAS  Google Scholar 

  10. Dub, S.N., Loboda, P.I., Bogomol, Yu.I., et al., Mechanical properties of HfB2 wiskers, J. Superhard Mater., 2013, vol. 35, no. 4, pp. 234–241.

    Article  Google Scholar 

  11. Zhang, Z.Y., Yang, S., Xu, C.G., Wang, B., and Duan, N.D., Deformation and stress at pop-in of lithium niobate induced by nanoindentation, Scr. Mater., 2014, vol. 77, pp. 56–59.

    Article  CAS  Google Scholar 

  12. Chen, J., Wang, W., Qian, L.H., and Lu, K., Critical shear stress for onset of plasticity in a nanocrystalline Cu determined by using nanoindentation, Ibid., 2003, vol. 49, pp. 645–650.

    CAS  Google Scholar 

  13. Lilleoden, E.T. and Nix, W.D., Microstructural length-scale effects in the nanoindentation behavior of thin gold films, Acta Mater., 2006, vol. 54, pp. 1583–1593.

    Article  Google Scholar 

  14. Wang, Y., Tam, Eric, and Shen, Y.G., An investigation on the onset of plastic deformation of nanocrystalline solid solution Ti–Al–N films, Eng. Fract. Mech., 2008, vol. 75, pp. 4978–4984.

    Article  Google Scholar 

  15. Wang, Y., Tam, P.L., and Shen, Y.G., Behavior of Ti0.5Al0.5N thin film in nanoscale deformation with different loading rates, Thin Solid Films, 2008, vol. 516, pp. 7641–7647.

    Article  CAS  Google Scholar 

  16. Lozano-Mandujano, D., Zarate–Medina, J., Morales-Estrella, R., and Munoz-Saldan, J., Synthesis and mechanical characterization by nanoindentation of polycrystalline YAG with Eu and Nd additions, Ceram. Int. 2013, vol. 39, pp. 3141–3149.

    Article  CAS  Google Scholar 

  17. Hay, J., Agee, P., and Herbert, E., Continuous stiffness measurement during instrumented indentation testing, Exp. Tech., 2010, no. 3, pp. 86–94.

    Article  Google Scholar 

  18. Ivashchenko, V. I., Dub, S. N., Scrynskii, P. L., Pogrebnjak, A. D., Sobol’, O. V., Tolmacheva, G. N., Rogoz, V. M., and Sinel’chenko, A. K., Nb–Al–N thin films: structural transition from nanocrystalline solid solution nc-(Nb,Al)N into nanocomposite nc-(Nb,Al)N/a–AlN, J. Superhard Mater., 2016, vol. 38, no. 2, pp. 103–113.

    Article  Google Scholar 

  19. Dub, S.N., Brazhkin, V.V., Belous, V. A., et al., Comparative nanoindentation of single crystals of hard and superhard oxides, Ibid., 2014, vol. 36, no. 4, pp. 217–230.

    Google Scholar 

  20. Tian, Y., Xu, B., Yu, D., Ma, Y., Wang, Y., Jiang, Y., Hu, W., Tang, C., Gao, Y., Luo, K., Zhao, Z., Wang, L., Wen, B., He, J., and Liu, Z., Ultrahard nanotwinned cubic boron nitride, Nature, 2013, vol. 493, pp. 385–388.

    Article  CAS  Google Scholar 

  21. Dubrovinskaia, N. and Dubrovinsky, L. Controversy about ultrahard nanotwined cBN; Tian et al. reply, Brief Communications Arising, Ibid., 2013, vol. 502, pp. E1–E3.

  22. Goken, M. and Kempf, M., Pop-ins in nanoindentations—the initial yield point, Z. Metallkd., 2001, vol. 92, pp. 1061–1067.

    CAS  Google Scholar 

  23. Zerr, A., Kempf, M., Schwarz, M., Kroke, E., Göken, M., and Riedel, R., Elastic moduli and hardness of cubic silicon nitride, J. Am. Ceram. Soc., 2002, vol. 85, pp. 86–90.

    Article  CAS  Google Scholar 

  24. Dedkov, V.S., Ivanov, Yu.F., Lopatin, V.V., and Sharupin, B.N., Special features of the pyrolytic boron nitride structure, Crystallography, 1993, vol. 38, issue 2, pp. 217–222.

    CAS  Google Scholar 

  25. Lopatin, V.V., Ivanov, Yu.F., and Dedkov, V.S., Structure-diffraction analysis of nanometer-sized polycrystals, J. Nanostructured Mater., 1994, vol. 4, pp. 669–676.

    Article  CAS  Google Scholar 

  26. Khvostantsev, L.G. and Slesarev, V.N., Large-volume high-pressure devices for physical investigations, UFN, 2008, vol. 51, pp. 1059–1063.

    Google Scholar 

  27. Siu, K.W. and Ngan, A.H.W., The continuous stiffness measurement technique in nanoindentation intrinsically modifies the strength of the sample, Phil. Mag., 2013, vol. 93, pp. 449–467.

    Article  CAS  Google Scholar 

  28. Cordill, M.J., Moody, N.R., and Gerberich, W.W., Effects of dynamic indentation on the mechanical response of materials, J. Mater. Res., 2008, vol. 23, pp. 1604–1613.

    Article  CAS  Google Scholar 

  29. Belyankina, A.V., Sozin, Yu.I., and Petrusha, I.A., Study of single-crystals of sphalerite boron nitride, Synthetic Diamonds, 1978, issue 4, pp. 13–17.

    Google Scholar 

  30. Solozhenko, V.L., Chernyshev, V.V., Fetisov, G.V., Rybakov, V.B., and Petrusha, I.A., Structure analysis of the cubic boron nitride crystals, J. Phys. Chem. Solids, 1990, vol. 51, pp. 1011–1012.

    Article  CAS  Google Scholar 

  31. Nikishina, M.V. and Itsenko, P.P., Stability of the nanostructure of pyrolytic boron nitride under a thermobaric influence, Nanosystems, Nanomaterials, Nanotechnologies, 2009, vol. 7, no. 2, pp. 505–516.

    CAS  Google Scholar 

  32. Britun, V.F., Kurdyumov, A.V., and Petrusha, I.A., The rBN–hBN–wBN–cBN crystal-oriented transformations in pyrolytic BN, J. Superhard Mater., 2000, vol. 22, no. 2, pp. 1–5.

    Google Scholar 

  33. Dub, S.N. and Petrusha, I.A., Mechanical properties of polycrystalline cBN obtained from pyrolytic gBN by direct transformation technique, High Press. Res., 2006, vol. 26, pp. 71–77.

    Article  CAS  Google Scholar 

  34. Solozhenko, V.L., Dub, S.N., and Novikov, N.V., Mechanical properties of cubic BC2N, a new superhard phase, Diamond Relat. Mater., 2001, vol. 10, pp. 2228–2231.

    Article  CAS  Google Scholar 

  35. Johnson, K.L., Contact mechanics, Cambridge: Cambridge University Press, 1985.

    Book  Google Scholar 

  36. Brazhkin, V.V., Alexander, G.L., and Hemley, R.J., Harder than diamond: Dreams and reality, Phil. Mag. A, 2002, vol. 82, pp. 231–253.

    Article  CAS  Google Scholar 

  37. Davies, R.M., The determination of static and dynamic yield stresses using a steel ball, Proc. R. Soc. London, Ser. A, 1949, vol. 197, pp. 416–432.

    Article  Google Scholar 

  38. Dub, S.N., Lim, Y.Y., and Chaudhri, M.M., Nanohardness of high purity Cu (111) single crystals: The effect of indenter load and prior plastic sample strain, J. Appl. Phys., 2010, vol. 107, art. 043510.

    Article  Google Scholar 

  39. Nikishina, M.V., Bilyavina, N.M., Barsukova, T.P., Britun, B.F., and Petrusha, I.A., Dependence of the hardness of pure polycrystalline materials of cubic boron nitride on structure parameters, Porodorazrushayushchii i metalloobrabatyvayushchii instrument—tekhnika i technologiya ego izgotovleniya i primeneniya (Rock destruction and metal-working tools—techniques and technology of the tool production and applications), Collect. Papers, Kiev: Bakul’ ISM, Nat. Ac. Sci. Ukraine, 2011, issue 14, pp. 299–304.

    Google Scholar 

  40. Tabor, D., Hardness of metals, Oxford: Clarendon Press, 1951.

    Google Scholar 

  41. Song, Z. and Komvopoulos, K., Elastic–plastic spherical indentation: Deformation regimes, evolution of plasticity, and hardening effect, Mech. Mater., 2013, vol. 61, pp. 91–100.

    Google Scholar 

  42. Dubrovinskaia, N., Solozhenko, V.L., Dmitriev, V., Kurakevych, O.O., and Dubrovinsky, L., Superhard nanocomposite of dense polymorphs of boron nitride: Noncarbon material has reached diamond hardness, Appl. Phys. Lett., 2007, vol. 90, art. 101912.

    Article  Google Scholar 

  43. Solozhenko, V.L., Kurakevych, O.O., and Le Godec Y., Creation of nanostuctures by extreme conditions: high-pressure synthesis of ultrahard nanocrystalline cubic boron nitride, Adv. Mater., 2012, vol. 24, pp. 1540–1544.

    Article  CAS  Google Scholar 

  44. Sumiya, H., Ishida, Y., Arimoto, K., and Harano, K., Real indentation hardness of nano-polycrystalline cBN synthesized by direct conversion sintering under HPHT, Diamond Relat. Mater., 2014, vol. 48, pp. 47–51.

    Article  CAS  Google Scholar 

  45. Novikov, N.V., Dub, S.N., and Malnev, V.I., Microhardness and fracture toughness of cubic boron nitride single crystals, Soviet J. Superhard Mater., 1983, vol. 5, pp. 16–20.

    Google Scholar 

  46. Brookes, C.A., Hooper, R.M., and Lambert, W.A., Identification of slip systems in cubic boron nitride, Phil. Mag., A, 1983, vol. 47, L.9–L.12.

    Article  Google Scholar 

  47. Fujisaki, K., Yokota, H., Furushirod, N., Yamagata, Y., Taniguchi, T., Himeno, R., Makinouchi, A., and Higuchi, T., Development of ultra-fine-grain binderless cBN tool for precision cutting of ferrous materials, J. Mater. Proc. Technol., 2009, vol. 209, pp. 5646–5652.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Dub.

Additional information

Original Russian Text © S.N. Dub, I.A. Petrusha, V.N. Bushlya, T. Taniguchi, V.A. Belous, G.N. Tolmachova, A.V. Andreev, 2017, published in Sverkhtverdye Materialy, 2017, Vol. 39, No. 2, pp. 20–34.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dub, S.N., Petrusha, I.A., Bushlya, V.M. et al. Theoretical shear strength and the onset of plasticity in nanodeformation of cubic boron nitride. J. Superhard Mater. 39, 88–98 (2017). https://doi.org/10.3103/S1063457617020034

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457617020034

Keywords

Navigation