Journal of Superhard Materials

, Volume 39, Issue 2, pp 88–98 | Cite as

Theoretical shear strength and the onset of plasticity in nanodeformation of cubic boron nitride

  • S. N. Dub
  • I. A. Petrusha
  • V. M. Bushlya
  • T. Taniguchi
  • V. A. Belous
  • G. N. Tolmachova
  • A. V. Andreev
Production, Structure, Properties

Abstract

The nanoindentation in the continuous stiffness measurement mode was used to investigate the onset of plasticity at the nanodeformation of cubic boron nitride (cBN). This technique allows us to reveal an elastic-plastic transition in the contact and to measure the yield strength of cBN at the nanoscale. An abrupt elastoplastic transition (a pop-in) was observed in the (111) cBN single crystal as a result of a homogeneous or heterogeneous nucleation of dislocations in the previously dislocations-free region under the contact. The analysis of the data obtained at the homogeneous nucleation of dislocations in the contact region made it possible to experimentally estimate the theoretical shear strength of cBN and its ideal (elastic) hardness. In a sample of the fine-grained cBN with a nanotwinned substructure a smooth elastoplastic transition was observed in consequence of the propagation and multiplication of already existing dislocations in the contact region.

Keywords

cBN mechanical properties nanoindentation nucleation of dislocations theoretical shear strength 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kelly, A., Strong solids, Oxford: Clarendon Press, 1973.Google Scholar
  2. 2.
    Berezhkova, G.V., Nitevidnye cristally (Wiskers), Moscow, Nauka, 1969.Google Scholar
  3. 3.
    Bei, H., Shim, S., George, E.P., et al., Compressive strengths of molybdenum alloy micropillars prepared using a new technique, Scripta Mater., 2007, vol. 57, pp. 397–400.CrossRefGoogle Scholar
  4. 4.
    Nadgorny, E.M., Dimiduk, D.M., and Uchic, M.D., Size effects in LiF micron-scale single crystals of low dislocation density, J. Mater. Res., 2008, vol. 23, pp. 2829–2835.CrossRefGoogle Scholar
  5. 5.
    Dehm, G., Miniaturized single-crystalline fcc metals deformed in tension: new insights in size dependent plasticity, Progress Mater. Sci., 2009, vol. 54, pp. 664–688.CrossRefGoogle Scholar
  6. 6.
    Michalske, T.A. and Houston, J.E., Dislocation nucleation at nano-scale mechanical contacts, Acta Mater., 1998, vol. 46, pp. 391–396.CrossRefGoogle Scholar
  7. 7.
    Zbib, A.A. and Bahr, D.F., Dislocation nucleation and source activation during nanoindentation yield points, Metal. Mater. Trans., 2007, vol. 38A, pp. 2249–2255.CrossRefGoogle Scholar
  8. 8.
    Zhao, X.F., Langford, R.M., Shapiro, I.P., and Xiao, P., Onset plastic deformation and cracking behavior of silicon carbide under contact load at room temperature, J. Am. Ceram. Soc., 2011, vol. 94, pp. 3509–3514.CrossRefGoogle Scholar
  9. 9.
    Wasmer, K., Gassilloud, R., and Michler, J., Analysis of onset of dislocation nucleation during nanoindentation and nanoscratching of InP, J. Mater. Res., 2012, vol. 27, pp. 320–329.CrossRefGoogle Scholar
  10. 10.
    Dub, S.N., Loboda, P.I., Bogomol, Yu.I., et al., Mechanical properties of HfB2 wiskers, J. Superhard Mater., 2013, vol. 35, no. 4, pp. 234–241.CrossRefGoogle Scholar
  11. 11.
    Zhang, Z.Y., Yang, S., Xu, C.G., Wang, B., and Duan, N.D., Deformation and stress at pop-in of lithium niobate induced by nanoindentation, Scr. Mater., 2014, vol. 77, pp. 56–59.CrossRefGoogle Scholar
  12. 12.
    Chen, J., Wang, W., Qian, L.H., and Lu, K., Critical shear stress for onset of plasticity in a nanocrystalline Cu determined by using nanoindentation, Ibid., 2003, vol. 49, pp. 645–650.Google Scholar
  13. 13.
    Lilleoden, E.T. and Nix, W.D., Microstructural length-scale effects in the nanoindentation behavior of thin gold films, Acta Mater., 2006, vol. 54, pp. 1583–1593.CrossRefGoogle Scholar
  14. 14.
    Wang, Y., Tam, Eric, and Shen, Y.G., An investigation on the onset of plastic deformation of nanocrystalline solid solution Ti–Al–N films, Eng. Fract. Mech., 2008, vol. 75, pp. 4978–4984.CrossRefGoogle Scholar
  15. 15.
    Wang, Y., Tam, P.L., and Shen, Y.G., Behavior of Ti0.5Al0.5N thin film in nanoscale deformation with different loading rates, Thin Solid Films, 2008, vol. 516, pp. 7641–7647.CrossRefGoogle Scholar
  16. 16.
    Lozano-Mandujano, D., Zarate–Medina, J., Morales-Estrella, R., and Munoz-Saldan, J., Synthesis and mechanical characterization by nanoindentation of polycrystalline YAG with Eu and Nd additions, Ceram. Int. 2013, vol. 39, pp. 3141–3149.CrossRefGoogle Scholar
  17. 17.
    Hay, J., Agee, P., and Herbert, E., Continuous stiffness measurement during instrumented indentation testing, Exp. Tech., 2010, no. 3, pp. 86–94.CrossRefGoogle Scholar
  18. 18.
    Ivashchenko, V. I., Dub, S. N., Scrynskii, P. L., Pogrebnjak, A. D., Sobol’, O. V., Tolmacheva, G. N., Rogoz, V. M., and Sinel’chenko, A. K., Nb–Al–N thin films: structural transition from nanocrystalline solid solution nc-(Nb,Al)N into nanocomposite nc-(Nb,Al)N/a–AlN, J. Superhard Mater., 2016, vol. 38, no. 2, pp. 103–113.CrossRefGoogle Scholar
  19. 19.
    Dub, S.N., Brazhkin, V.V., Belous, V. A., et al., Comparative nanoindentation of single crystals of hard and superhard oxides, Ibid., 2014, vol. 36, no. 4, pp. 217–230.Google Scholar
  20. 20.
    Tian, Y., Xu, B., Yu, D., Ma, Y., Wang, Y., Jiang, Y., Hu, W., Tang, C., Gao, Y., Luo, K., Zhao, Z., Wang, L., Wen, B., He, J., and Liu, Z., Ultrahard nanotwinned cubic boron nitride, Nature, 2013, vol. 493, pp. 385–388.CrossRefGoogle Scholar
  21. 21.
    Dubrovinskaia, N. and Dubrovinsky, L. Controversy about ultrahard nanotwined cBN; Tian et al. reply, Brief Communications Arising, Ibid., 2013, vol. 502, pp. E1–E3.Google Scholar
  22. 22.
    Goken, M. and Kempf, M., Pop-ins in nanoindentations—the initial yield point, Z. Metallkd., 2001, vol. 92, pp. 1061–1067.Google Scholar
  23. 23.
    Zerr, A., Kempf, M., Schwarz, M., Kroke, E., Göken, M., and Riedel, R., Elastic moduli and hardness of cubic silicon nitride, J. Am. Ceram. Soc., 2002, vol. 85, pp. 86–90.CrossRefGoogle Scholar
  24. 24.
    Dedkov, V.S., Ivanov, Yu.F., Lopatin, V.V., and Sharupin, B.N., Special features of the pyrolytic boron nitride structure, Crystallography, 1993, vol. 38, issue 2, pp. 217–222.Google Scholar
  25. 25.
    Lopatin, V.V., Ivanov, Yu.F., and Dedkov, V.S., Structure-diffraction analysis of nanometer-sized polycrystals, J. Nanostructured Mater., 1994, vol. 4, pp. 669–676.CrossRefGoogle Scholar
  26. 26.
    Khvostantsev, L.G. and Slesarev, V.N., Large-volume high-pressure devices for physical investigations, UFN, 2008, vol. 51, pp. 1059–1063.Google Scholar
  27. 27.
    Siu, K.W. and Ngan, A.H.W., The continuous stiffness measurement technique in nanoindentation intrinsically modifies the strength of the sample, Phil. Mag., 2013, vol. 93, pp. 449–467.CrossRefGoogle Scholar
  28. 28.
    Cordill, M.J., Moody, N.R., and Gerberich, W.W., Effects of dynamic indentation on the mechanical response of materials, J. Mater. Res., 2008, vol. 23, pp. 1604–1613.CrossRefGoogle Scholar
  29. 29.
    Belyankina, A.V., Sozin, Yu.I., and Petrusha, I.A., Study of single-crystals of sphalerite boron nitride, Synthetic Diamonds, 1978, issue 4, pp. 13–17.Google Scholar
  30. 30.
    Solozhenko, V.L., Chernyshev, V.V., Fetisov, G.V., Rybakov, V.B., and Petrusha, I.A., Structure analysis of the cubic boron nitride crystals, J. Phys. Chem. Solids, 1990, vol. 51, pp. 1011–1012.CrossRefGoogle Scholar
  31. 31.
    Nikishina, M.V. and Itsenko, P.P., Stability of the nanostructure of pyrolytic boron nitride under a thermobaric influence, Nanosystems, Nanomaterials, Nanotechnologies, 2009, vol. 7, no. 2, pp. 505–516.Google Scholar
  32. 32.
    Britun, V.F., Kurdyumov, A.V., and Petrusha, I.A., The rBN–hBN–wBN–cBN crystal-oriented transformations in pyrolytic BN, J. Superhard Mater., 2000, vol. 22, no. 2, pp. 1–5.Google Scholar
  33. 33.
    Dub, S.N. and Petrusha, I.A., Mechanical properties of polycrystalline cBN obtained from pyrolytic gBN by direct transformation technique, High Press. Res., 2006, vol. 26, pp. 71–77.CrossRefGoogle Scholar
  34. 34.
    Solozhenko, V.L., Dub, S.N., and Novikov, N.V., Mechanical properties of cubic BC2N, a new superhard phase, Diamond Relat. Mater., 2001, vol. 10, pp. 2228–2231.CrossRefGoogle Scholar
  35. 35.
    Johnson, K.L., Contact mechanics, Cambridge: Cambridge University Press, 1985.CrossRefGoogle Scholar
  36. 36.
    Brazhkin, V.V., Alexander, G.L., and Hemley, R.J., Harder than diamond: Dreams and reality, Phil. Mag. A, 2002, vol. 82, pp. 231–253.CrossRefGoogle Scholar
  37. 37.
    Davies, R.M., The determination of static and dynamic yield stresses using a steel ball, Proc. R. Soc. London, Ser. A, 1949, vol. 197, pp. 416–432.CrossRefGoogle Scholar
  38. 38.
    Dub, S.N., Lim, Y.Y., and Chaudhri, M.M., Nanohardness of high purity Cu (111) single crystals: The effect of indenter load and prior plastic sample strain, J. Appl. Phys., 2010, vol. 107, art. 043510.CrossRefGoogle Scholar
  39. 39.
    Nikishina, M.V., Bilyavina, N.M., Barsukova, T.P., Britun, B.F., and Petrusha, I.A., Dependence of the hardness of pure polycrystalline materials of cubic boron nitride on structure parameters, Porodorazrushayushchii i metalloobrabatyvayushchii instrument—tekhnika i technologiya ego izgotovleniya i primeneniya (Rock destruction and metal-working tools—techniques and technology of the tool production and applications), Collect. Papers, Kiev: Bakul’ ISM, Nat. Ac. Sci. Ukraine, 2011, issue 14, pp. 299–304.Google Scholar
  40. 40.
    Tabor, D., Hardness of metals, Oxford: Clarendon Press, 1951.Google Scholar
  41. 41.
    Song, Z. and Komvopoulos, K., Elastic–plastic spherical indentation: Deformation regimes, evolution of plasticity, and hardening effect, Mech. Mater., 2013, vol. 61, pp. 91–100.Google Scholar
  42. 42.
    Dubrovinskaia, N., Solozhenko, V.L., Dmitriev, V., Kurakevych, O.O., and Dubrovinsky, L., Superhard nanocomposite of dense polymorphs of boron nitride: Noncarbon material has reached diamond hardness, Appl. Phys. Lett., 2007, vol. 90, art. 101912.CrossRefGoogle Scholar
  43. 43.
    Solozhenko, V.L., Kurakevych, O.O., and Le Godec Y., Creation of nanostuctures by extreme conditions: high-pressure synthesis of ultrahard nanocrystalline cubic boron nitride, Adv. Mater., 2012, vol. 24, pp. 1540–1544.CrossRefGoogle Scholar
  44. 44.
    Sumiya, H., Ishida, Y., Arimoto, K., and Harano, K., Real indentation hardness of nano-polycrystalline cBN synthesized by direct conversion sintering under HPHT, Diamond Relat. Mater., 2014, vol. 48, pp. 47–51.CrossRefGoogle Scholar
  45. 45.
    Novikov, N.V., Dub, S.N., and Malnev, V.I., Microhardness and fracture toughness of cubic boron nitride single crystals, Soviet J. Superhard Mater., 1983, vol. 5, pp. 16–20.Google Scholar
  46. 46.
    Brookes, C.A., Hooper, R.M., and Lambert, W.A., Identification of slip systems in cubic boron nitride, Phil. Mag., A, 1983, vol. 47, L.9–L.12.CrossRefGoogle Scholar
  47. 47.
    Fujisaki, K., Yokota, H., Furushirod, N., Yamagata, Y., Taniguchi, T., Himeno, R., Makinouchi, A., and Higuchi, T., Development of ultra-fine-grain binderless cBN tool for precision cutting of ferrous materials, J. Mater. Proc. Technol., 2009, vol. 209, pp. 5646–5652.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • S. N. Dub
    • 1
  • I. A. Petrusha
    • 1
  • V. M. Bushlya
    • 2
  • T. Taniguchi
    • 3
  • V. A. Belous
    • 4
  • G. N. Tolmachova
    • 4
  • A. V. Andreev
    • 3
  1. 1.Bakul Institute for Superhard MaterialsNational Academy of Sciences of UkraineKievUkraine
  2. 2.Division of Production and Materials EngineeringLund UniversityLundSweden
  3. 3.National Institute for Material ScienceTsukuba, IbarakiJapan
  4. 4.Kharkiv Institute of Physics and TechnologyKievUkraine

Personalised recommendations