Journal of Superhard Materials

, Volume 32, Issue 6, pp 406–414 | Cite as

Comparative studies of mechanical properties of stishovite and sapphire single crystals by nanoindentation

  • S. N. Dub
  • V. V. Brazhkin
  • N. V. Novikov
  • G. N. Tolmachova
  • P. M. Litvin
  • L. M. Lityagina
  • T. I. Dyuzheva
Production, Structure, Properties

Abstract

Comparative nanoindentation tests of stishovite and sapphire single crystals have been performed. It has been found that nanohardness of the (0001) plane of sapphire at a depth of 200 nm is 29.1 ± 0.1 GPa, while the nanohardness of the (110) plane of stishovite is 38.1 ± 0.6 GPa, the tests conditions being the same. The specifics of elastoplastic transition in sapphire and stishovite single crystals and alumina-based polycrystalline ceramic when plastic deformation is localized in a submicron region have been studied. Anomalous elastoplastic transition in stishovite has been revealed. A possibility that anomalous mechanical behavior of stishovite at the nanoscale may be due to a strong softening of the lattice as a precursor of the formation of a post-stishovite phase of silica with the CaCl2 structure in an indent has been discussed.

Key words

nanoindentation nanohardness elasto-plastic transition sapphire stishovite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stishov, S.M. and Popova, S.V., A New Dense Modification of Silica, Geokhimiya, 1961, vol. 10, pp. 923–926.Google Scholar
  2. 2.
    Leger, J.M., Halnes, J., Schnidt, M., et al., Discovery of Hardest Known Oxide, Nature, 1996, vol. 383, pp. 401–402.CrossRefGoogle Scholar
  3. 3.
    Dubrovinsky, L.S., Dubrovinskaia, N.A., Swamy, V., et al., The Hardest Known Oxide, ibid., 2001, vol. 410, pp. 653–654.CrossRefGoogle Scholar
  4. 4.
    Brazhkin, V.V., Grimsdich, M., Guedess, I., et al., Elastic Moduli and Mechanical Properties of Stishovite Single Crystals, Uspekhi Fizicheskikh Nauk, 2002, vol. 172, 488–489.CrossRefGoogle Scholar
  5. 5.
    Solozhenko, V.L., Dub, S.N., and Novikov, N.V., Mechanical Properties of Cubic BC2N, a New Superhard Phase, Diamond Relat. Mater., 2001, vol. 10, no. 12, pp. 2228–2231.CrossRefGoogle Scholar
  6. 6.
    Golovin, Yu.V., Nanoindentipovanie i ego vozmozhnosti (Nanoindentation and Its Potentialities), Moscow: Mashinostroenie, 2009.Google Scholar
  7. 7.
    Luo, S.N., Swadener, J.G., Mac, C., and Tschauner, O., Examining Crystallographic Orientation Dependence of Hardness of Silica Stishovite, Physica B, 2007, vol. 399, pp. 138–142.CrossRefGoogle Scholar
  8. 8.
    Oliver, W.C. and Pharr, G. M., An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, vol. 7, no. 6, pp. 1564–1583.CrossRefGoogle Scholar
  9. 9.
    Gogotsi, G.A., Dub, S.N., Lomonova, E.E., and Ozersky, B.I., Vickers and Knoop Indentation Behaviour of Cubic and Partially Stabilized Zirconia Crystals, J. Europ. Ceram. Soc., 1995, vol. 15, pp. 405–413.CrossRefGoogle Scholar
  10. 10.
    Gaillard, Y., Anglada, M., and Jimenes-Pique, E., Nanoindentation of Yttria-Doped Zirconia: Effect of Crystallographic Structure on Deformation Mechanisms, J. Mater. Res., 2009, vol. 24, no. 3, pp. 719–727.CrossRefGoogle Scholar
  11. 11.
    Dub, S.N., Lim, Y.Y., and Chaudhri, M.M., Nanohardness of High Purity Cu (111) Single Crystals: the Effect of Indenter Load and Prior Plastic Sample Strain, J. Appl. Phys., 2010, vol. 107, art. 4043510.Google Scholar
  12. 12.
    Page, T.F., Oliver, W.C., and McHargue, C.J., The Deformation Behavior of Ceramic Crystals Subjected to Very Low Load (nano) Indentations, J. Mater. Res., 1992, vol. 7, no. 2, pp. 450–473.CrossRefGoogle Scholar
  13. 13.
    Nowak, R., Sekino, T., Maruno, S., and Niihara, K., Deformation of Sapphire Induced by a Spherical Indentation on the (1010) Plane, Appl. Phys. Lett., 1996, vol. 68, no. 8, pp. 1063–1065.CrossRefGoogle Scholar
  14. 14.
    Lu, C., Mai, Y.-W., Tam, P.L., and Shen, Y.G., Nanoindentation-Induced Elastic-Plastic Transition and Size Effect in a-Al2O3 (0001), Phil. Mag. Lett., 2007, vol. 87, no. 6, pp. 409–415.CrossRefGoogle Scholar
  15. 15.
    Basu, S., Barsoum, M.W., and Kalidindi, S.R., Sapphire: a Kinking Nonlinear Elastic Solid, J. Appl. Phys., 2006, vol. 99, pp. 063501.CrossRefGoogle Scholar
  16. 16.
    Golovin, Yu.I. and Dub, S.N., A Spasmodic Transition from Elastic to Elastoplastic Deformation at the Initial Stage of Nanoindentation, Doklady Russian Ac. Sci., 2003, vol. 393, no. 2, pp. 180–183.Google Scholar
  17. 17.
    Galin, L.A., Three-Dimensional Contact Problems of the Elasticity Theory for Dies of a Circular Shape in Plane, Prikladnaya Matematika i Mekhanika, 1946, vol. 10, no. 4, pp. 425–448.Google Scholar
  18. 18.
    Sneddon, I.N., The Relation between Load and Penetration in the Axisymmetric Boussinesq Problem for a Punch of Arbitrary Profile, Int. J. Eng. Sci., 1965, vol. 3, pp. 47–56.CrossRefGoogle Scholar
  19. 19.
    Johnson, K.L., Contact Mechanics, Cambridge: Cambridge University Press, 1985.Google Scholar
  20. 20.
    Kingma, K.J., Cohen, R.E., Hemley, R.J., and Mao, H.-K., Transformation of Stishovite to a Denser Phase at Lower-Mantle Pressures, Nature, 1995, vol. 374, pp. 243–245.CrossRefGoogle Scholar
  21. 21.
    Andrault, D., Fiquet, G., Guyot, F., and Hanfland, M., Pressure-Induced Landau-Type Transition in Stishovite, Science, 1996, vol. 282, pp. 720–721.CrossRefGoogle Scholar
  22. 22.
    Shieh, S.R. and Duffy, T.S., Strength and Elasticity of SiO2 across the Stishovite-CaCl2-Type Structural Phase Boundary, Phys. Rev. Lett., 2002, vol. 89, no. 25, art. 255507.Google Scholar
  23. 23.
    Saka, H., Shimatani, A., Suganuma, M., and Suprijadi, A., Transmission Electron Microscopy of Amorphization and Phase Transformation Beneath Indents in Si, Phil. Mag. A, 2002, vol. 82, no. 10, pp. 1971–1981.CrossRefGoogle Scholar
  24. 24.
    Gogotsi, Y.G., Domnich, V., Dub, S.N., et al., Cyclic Nanoindentation and Raman Micro-Spectroscopy Study of Phase Transformations in Semiconductors, J. Mater. Res., 2000, vol. 15, no. 3, pp. 871–879.Google Scholar

Copyright information

© Allerton Press, Inc. 2010

Authors and Affiliations

  • S. N. Dub
    • 1
  • V. V. Brazhkin
    • 2
  • N. V. Novikov
    • 1
  • G. N. Tolmachova
    • 3
  • P. M. Litvin
    • 4
  • L. M. Lityagina
    • 2
  • T. I. Dyuzheva
    • 2
  1. 1.Bakul Institute for Superhard MaterialsNational Academy of Sciences of UkraineKievUkraine
  2. 2.Vereshchagin Institute of High Pressure PhysicsRussian Academy of SciencesTroitskRussia
  3. 3.Kharkiv Institute of Physics and TechnologyNational Scientific CenterKharkovUkraine
  4. 4.Lashkarev Institute of Physics of SemiconductorsNational Academy of SciencesKievUkraine

Personalised recommendations