The Speed-Gradient Algorithm in the Inverse Stoker Problem for a Synchronous Electric Machine

  • S. A. Plotnikov
  • A. L. Fradkov
  • A. I. Shepeljavyi
Mathematics
  • 2 Downloads

Abstract

The problem of control of the number of cycle slippings of an electric machine rotor by means of an external moment is considered by the example of a simple mathematical model. The speed-gradient method with the objective function determined by the oscillation energy function is applied to solve this problem. The use of quite a small control is a feature of this approach, which helps to save energy. We have developed an algorithm to control oscillations of an electric machine rotor, so that the rotor performs a predetermined number of cycle slippings. The simulation results illustrate the efficiency of the suggested algorithm.

Keywords

Stoker problem speed-gradient algorithm energy control electric machines 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. J. Stoker, Nonlinear Vibrations in Mechanical and Electrical Systems (Interscience, New York, 1950).MATHGoogle Scholar
  2. 2.
    O. B. Ershova and G. A. Leonov, “Frequency estimates of the number of cycle slippings in the phase control systems,” Autom. Remote Control 44, 600–607 (1983).MATHGoogle Scholar
  3. 3.
    S. Ali-Habib, A. V. Morozov, and A. I. Shepeljavyi, “Estimates of cycle slippings for synchronization systems,” in Proc. Int. Conf. and Chebyshev Readings Dedicated to 175 Years since P. L. Chebyshev’s Birthday, Moscow, May 14–19, 1996 (Mosk. Gos. Univ., Moscow, 1996), Vol. 1, pp. 16–19.Google Scholar
  4. 4.
    V. B. Smirnova, N. V. Utina, A. I. Shepeljavyi, and A. A. Perkin, “Frequency estimates for the number of cycle slippings in a phase system with nonlinear vector function,” Vestn. St. Petersburg Univ.: Math. 42, 28–36 (2009).MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    A. A. Perkin, E. L. Per’eva, V. B. Smirnova, and A. I. Shepelyavyi, “Frequency-algebraic estimates of a number of slipped cycles for multidimensional phase systems with differentiable nonlinearities,” in Mekh. Tverd. Tela (Donetsk), No. 42, 143–152 (2012).MATHGoogle Scholar
  6. 6.
    V. Smirnova, A. Shepeljavyi, A. Proskurnikov, and A. Perkin, “Sharpened estimates for the number of slipped cycles in control systems with periodic differentiable nonlinearities,” Cybernet. Phys. 2, 222–231 (2013).Google Scholar
  7. 7.
    V. B. Smirnova, A. A. Perkin, A. V. Proskurnikov, and A. I. Shepeljavyi, “Estimation of cycle-slipping for phase synchronization systems,” in Proc. 21st Int. Symp. on Mathematical Theory of Networks and Systems (MTNS 2014), Groningen, Netherlands, July 7–11, 2014 (Univ. of Groningen, Groningen 2014), pp. 1244–1249.Google Scholar
  8. 8.
    N. V. Utina, “Lower estimation of the number of cycle-slip periods of phase-locked loops in discrete systems,” Vestn. St. Petersburg Univ.: Math. 36, 36–43 (2003).MathSciNetMATHGoogle Scholar
  9. 9.
    N. V. Utina and A. I. Shepeljavyi, “The Stoker problem for multidimensional discrete phase control systems,” Autom. Remote Control 66, 1761–1767 (2005).MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    F. F. Rodyukov, Mathematical Model of a Large-Scale Electric Power System (St. Peterb. Gos. Univ., St. Petersburg, 2006) [in Russian].Google Scholar
  11. 11.
    N. V. Kondrat’eva, G. A. Leonov, F. F. Rodyukov, and A. I. Shepeljavyi, “Nonlocal analysis of differential equations of induction motors,” Tech. Mech. 21, 75–86 (2001).Google Scholar
  12. 12.
    G. A. Leonov, N. V. Kondrat’eva, F. F. Rodyukov, and A. I. Shepeljavyi, “Nonlocal analysis of differential equations of asynchronous machine,” in Nonlinear Mechanics, Ed. by V. M. Matrosov, V. V. Rumyantsev, and A. V. Karapetyan (Fizmatlit, Moscow, 2001), pp. 257–280 [in Russian].Google Scholar
  13. 13.
    G. A. Leonov and N. V. Kondrat’eva, Stability Analysis of Electric machines of Alternating Current (St. Peterb. Gos. Univ., St. Petersburg, 2008) [in Russian].Google Scholar
  14. 14.
    A. L. Fradkov, “Speed-gradient scheme and its application in adaptive control problems,” Autom. Remote Control 40, 1333–1342 (1979).MATHGoogle Scholar
  15. 15.
    A. L. Fradkov, Cybernetical Physics: From Control of Chaos to Quantum Control (Nauka, St. Petersburg, 2003; Springer-Verlag, Berlin, 2007).MATHGoogle Scholar
  16. 16.
    B. R. Andrievsky, “Computation of the excitability index for linear oscillators,” in Proc. 44th IEEE Conf. on Decision and Control and European Control Conf., Seville, Dec. 15, 2005 (IEEE, 2005), pp. 3537–3540.Google Scholar
  17. 17.
    S. Plotnikov and B. Andrievsky, “Control of MEMS gyroscope oscillation using speed gradient algorithm,” IFAC Proc. Vol. 46 (12), 1–4 (2013).CrossRefGoogle Scholar
  18. 18.
    A. Selivanov, A. Fradkov, and E. Fridman, “Passification-based decentralized adaptive synchronization of dynamical networks with time-varying delays,” J. Franklin Inst. 352, 52–72 (2015).MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    A. L. Fradkov and B. R. Andrievsky, “Control of wave motion in the chain of pendulums,” in Proc. 17th IFAC World Congr., Seoul, July 6–11, 2008; IFAC Proc. Vol. 41, 3136–3141.Google Scholar
  20. 20.
    P. Y. Guzenko, J. Lehnert, and E. Schöll, “Application of adaptive methods to chaos control of networks of Rössler systems,” Cybernet. Phys. 2, 15–24 (2013).Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • S. A. Plotnikov
    • 1
    • 2
  • A. L. Fradkov
    • 1
    • 2
    • 3
  • A. I. Shepeljavyi
    • 2
  1. 1.Institute of Problems of Mechanical EngineeringSt. PetersburgRussia
  2. 2.St. Petersburg National Research University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia
  3. 3.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations