Advertisement

Frequency-Domain Criterion for the Global Stability of Dynamical Systems with Prandtl Hysteresis Operator

  • G. A. Leonov
  • K. D. Aleksandrov
Mathematics

Abstract

In the present paper, dynamical systems with Prandtl hysteresis operator are considered. For the class of dynamical systems under consideration, a frequency-domain global stability criterion is formulated and proved. For a second-order dynamical system with Prandtl operator, we demonstrate the advantage of the obtained criterion as compared to the well-known criterion derived by Logemann and Ryan.

Keywords

dynamical systems hysteresis Prandtl operator stop operator frequency-domain stability criteria 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Andronov and N. N. Bautin, “On a degenerate case of the general problem of direct control,” Dokl. Akad. Nauk SSSR 46, 304–307 (1945).Google Scholar
  2. 2.
    A. A. Feldbaum, “The simplest relay systems of automatic control,” Autom. Telemekh. 10, 249–260 (1949).Google Scholar
  3. 3.
    A. A. Andronov, A. A. Witt, and S. E. Khaikin, Theory of Oscillations, 2nd ed., Ed. by N. Zheleztsov (Fizmatgiz, Moscow, 1959) [in Russian].Google Scholar
  4. 4.
    L. Prandtl, “Spannungsverteilung in plastischen körpern,” in Proc. 1st Int. Congr. for Applied Mechanics, Delft, 1924 (Waltman, Delft, 1925), pp. 43–54.Google Scholar
  5. 5.
    A. Visintin, Differential Models of Hysteresis, Ed. by F. John, J. E. Marsden, L. Sirovich (Springer-Verlag, New York, 1994).Google Scholar
  6. 6.
    M. Brokate and J. Sprekels, Hysteresis and Phase Transitions (Springer-Verlag, New York, 1996).CrossRefzbMATHGoogle Scholar
  7. 7.
    A. Visintin, “Mathematical models of hysteresis,” in The Science of Hysteresis, Vol. 1: Mathematical Modeling and Applications, Ed. by G. Berotti and I. D. Mayergoyz (Academic, Oxford, 2006), pp. 1–114.Google Scholar
  8. 8.
    M. A. Krasnosel’skii and A. V. Pokrovskii, Systems with Hysteresis (Nauka, Moscow, 1983; Springer-Verlag, Berlin, 1989).CrossRefzbMATHGoogle Scholar
  9. 9.
    G. A. Leonov, I. M. Burkin, and A. I. Shepelyavy, Frequency Methods in Oscillation Theory (Kluwer, Dordretcht, 1996).CrossRefGoogle Scholar
  10. 10.
    A. Gelig, G. Leonov, and V. Yakubovich, Stability of Stationary Sets in Control Systems with Discontinuous Nonlinearities (World Sci., Singapore, 2004).zbMATHGoogle Scholar
  11. 11.
    G. A. Leonov, D. V. Ponomarenko, and V. B. Smirnova, Frequency-Domain Methods for Nonlinear Analysis. Theory and Applications (World Sci., Singapore, 1996).CrossRefzbMATHGoogle Scholar
  12. 12.
    V. A. Yakubovich, “The method of matrix inequalities in the theory of stability of non-linear controlled systems. III. Absolute stability of systems with hysteresis non-linearities,” Autom. Telemekh. 26, 753–763 (1965).MathSciNetzbMATHGoogle Scholar
  13. 13.
    H. Logemann and E. P. Ryan, “Systems with hysteresis in the feedback loop: existence, regularity and asymptotic behaviour of solutions,” ESAIM: Control, Optim. Calculus Var. 9, 169–196 (2003).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    H. Logemann, E. P. Ryan, and I. Shvartsman, “A class of differential-delay systems with hysteresis: Asymptotic behaviour of solutions,” Nonlinear Analysis: Theory, Methods Appl. 69, 363–391 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    H. Logemann and E. P. Ryan, “Time-varying and adaptive integral control of infinite-dimensional regular linear systems with input nonlinearities,” SAIM J. Control Optim. 38, 1120–1144 (2000).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    H. Logemann and A. D. Mawby, “Low-gain integral control of infinite-dimensional regular linear systems subject to input hysteresis,” in Advances in Mathematical Systems Theory: A Volume in Honor of Diederich Hinrichsen, Ed. by F. Colonius, U. Helmke, D. Prätzel-Wolters, and F. Wirth (Birkhäuser, Boston, 2000), pp. 255–293.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations