Diffraction-Free Mathieu Pulses in a Carbon Nanotube Medium under the Conditions of an Optical Resonator


The propagation of an extremely short three-dimensional optical pulse in a medium of semiconductor carbon nanotubes under the conditions of a cylindrical optical resonator is studied theoretically. The pulse’s cross section is described by Mathieu functions. Numerical modeling is used to show that such pulses propagate steadily, retaining their energy in a limited spatial region. The pulse is reflected off the walls of the optical resonator and encounters further interference. Calculations are performed in the time domain up to 140 ps, which is important for possible practical applications.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.


  1. 1

    Bandres, M.A., Gutiérrez-Vega, J.C., and Chávez-Cerda, S., Opt. Lett., 2004, vol. 29, p. 44.

    ADS  Article  Google Scholar 

  2. 2

    Jiang, J.-W. and Wang, J.-S., J. Appl. Phys., 2011, vol. 110, 124319.

    ADS  Article  Google Scholar 

  3. 3

    Leblond, H. and Mihalache, D., Phys. Rev. A: At., Mol., Opt. Phys., 2012, vol. 86, 043832.

    Google Scholar 

  4. 4

    Belonenko, M., Demushkina, E.V., and Lebedev, N.G., J. Russ. Laser Res., 2006, vol. 27, p. 457.

    Article  Google Scholar 

  5. 5

    Kivshar, Yu.S. and Agrawal, G., Optical Solitons: From Fibers to Photonic Crystals, New York: Academic, 2003.

    Google Scholar 

  6. 6

    Gutiérrez-Vega, J.C., Iturbe-Castillo, M.D., and Ramírez, G.A., Opt. Commun., 2001, vol. 195, p. 35.

    ADS  Article  Google Scholar 

  7. 7

    Eletskii, A.V., Phys.—Usp., 1997, vol. 40, no. 9, p. 899.

    ADS  Article  Google Scholar 

  8. 8

    Dresselhaus, M.S., Dresselhaus, G., and Eklund, P.C., Science of Fullerenes and Carbon Nanotubes, San Diego: Academic, 1996.

    Google Scholar 

  9. 9

    Zhukov, A.V., Bouffanais, R., Fedorov, E.G., et al., J. Appl. Phys., 2013, vol. 114, 143106.

    ADS  Article  Google Scholar 

  10. 10

    Bakhvalov, N.S., Chislennye metody (analiz, algebra, obyknovennye differentsial’nye uravneniya) (Numerical Methods: Analysis, Algebra, Ordinary Differential Equations), Moscow: Nauka, 1975.

  11. 11

    Abramowits, M. and Stegun, I.A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, New York: Dover, 1964.

    Google Scholar 

Download references


Yu.V. Dvuzhilova, I.S. Dvuzhilov, and M.B. Belonenko thank the RF Ministry of Science and Higher Education for their State Task in support of numerical modeling, project no. 0633-2020-0003.

Author information



Corresponding author

Correspondence to Yu. V. Dvuzhilova.

Additional information

Translated by V. Alekseev

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dvuzhilova, Y.V., Belonenko, A.M., Dvuzhilov, I.S. et al. Diffraction-Free Mathieu Pulses in a Carbon Nanotube Medium under the Conditions of an Optical Resonator. Bull. Russ. Acad. Sci. Phys. 84, 1483–1485 (2020). https://doi.org/10.3103/S1062873820120114

Download citation