Modeling the Distribution of Magnetization in a Rectangular Strip with an Axis of Easy Magnetization Perpendicular to the Plane

Abstract

A theory is constructed for the ordering of magnetic domains in magnetic film materials in the presence of point dipole magnetic inhomogeneities. The distribution of magnetization is modeled for a rectangular strip with an axis of easy magnetization perpendicular to its plane in the presence of point dipole magnetic inhomogeneities. 3D modeling of the magnetic structure of the plate reveals the curvature of the domain boundary caused by the field of local magnetic inhomogeneity and along the thickness of the plate.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.

REFERENCES

  1. 1

    Landau, L.D. and Lifshitz, E.M., Course of Theoretical Physics, vol. 8: Electrodynamics of Continuous Media, Amsterdam: Elsevier, 1984.

    Google Scholar 

  2. 2

    Vonsovskii, S.V., Magnetizm. Magnitnye svoistva dia, para, ferro, antiferro i ferrimagnetikov (Magnetism. Magnetic Properties of Dia-, Para-, Ferro-, Antiferro-, and Ferrimagnetics), Moscow: Nauka, 1971.

  3. 3

    Kittel, Ch., Rev. Mod. Phys., 1949, vol. 21, p. 541.

    ADS  Article  Google Scholar 

  4. 4

    Eschenfelder, A.H., Magnetic Bubble Technology, New York: Springer, 1980.

    Google Scholar 

  5. 5

    Akimov, M.L., Boltasova, Yu.V., and Polyakov, P.A., J. Commun. Technol. Electron., 2001, vol. 46, p. 469.

    Google Scholar 

  6. 6

    Akimov, M.L., Polyakov, P.A., and Usmanov, N.N., J. Exp. Theor. Phys., 2002, vol. 94, no. 2, p. 293.

    ADS  Article  Google Scholar 

  7. 7

    Akimov, M.L. and Polyakov, P.A., Moscow Univ. Phys. Bull. (Engl. Transl.), 2004, vol. 59, no. 2, p. 53.

    Google Scholar 

  8. 8

    Akimov, M.L., Vagin, D.V., Polyakov, O.P., et al., Bull. Russ. Acad. Sci.: Phys., 2007, vol. 71, no. 11, p. 1556.

    Article  Google Scholar 

  9. 9

    Akimov, M.L., Polyakov, P.A., Starokurov, Y.V., et al., Phys. B(Amsternam, Neth.), 2010, vol. 405, p. 2376.

    ADS  Article  Google Scholar 

  10. 10

    Akimov, M. L., Polyakov, P. A., Banishev, A. A., et al., Int. J. Mod. Phys. B, 2016, vol. 30, no. 12, 1650081.

    ADS  Article  Google Scholar 

  11. 11

    Akimov, M.L., Polyakov, P.A., and Rusakova, N.E., Int. J. Mod. Phys. B, 2018, vol. 32, no. 1, 1750272.

    ADS  Article  Google Scholar 

  12. 12

    Akimov, M.L., Polyakov, P.A., Banishev, A.A., et al., Int. J. Mod. Phys. B, 2019, vol. 33, no. 14, 1950142.

    ADS  Article  Google Scholar 

  13. 13

    Akimov, M.L. and Polyakov, P.A., Bull. Russ. Acad. Sci.: Phys., 2018, vol. 82, no. 8, p. 968.

    Article  Google Scholar 

  14. 14

    Bateman, H. and Erdélyi, A., Tables of Integral Transforms, New York: McGraw-Hill, 1954.

    Google Scholar 

  15. 15

    Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, Abramowitz, M. and Stegun, I.A., Eds., New York: Dover, 1965.

    Google Scholar 

Download references

Funding

This work was supported by the BASIS Foundation for the Development of Theoretical Physics and Mathematics.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. L. Akimov.

Additional information

Translated by N. Petrov

About this article

Verify currency and authenticity via CrossMark

Cite this article

Akimov, M.L., Polyakov, P.A. & Shevtsov, V.S. Modeling the Distribution of Magnetization in a Rectangular Strip with an Axis of Easy Magnetization Perpendicular to the Plane. Bull. Russ. Acad. Sci. Phys. 84, 596–598 (2020). https://doi.org/10.3103/S1062873820050032

Download citation