Advertisement

New Techniques and Designs of Focusing Piezoelectric Transducers for Ultrasonic Diagnostics and Therapy

  • N. A. Shvetsova
  • D. I. Makarev
  • I. A. Shvetsov
  • S. A. Shcherbinin
  • A. N. Rybyanets
Proceedings of the XXI National Conference on Magnetoelectrics Physics
  • 18 Downloads

Abstract

New techniques of forming high intensity focused ultrasound (HIFU) fields using dynamic focusing and harmonic multifrequency excitation are developed for ultrasonic diagnostics and therapy. New designs of HIFU transducers based on high-performance composite materials are developed and studied. Finite-element and finite-difference simulations of HIFU transducers and processes of ultrasonic wave propagation in biological tissues are performed. The parameters of piezoceramic materials, piezoelements, and the acoustic fields of focusing ultrasonic transducers are measured. Experiments are performed on biological tissues ex vivo that confirm the efficiency, selectivity, and safety of the developed HIFU transducers and techniques of forming acoustic fields.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hill, C.R., Bamber, J.C., and ter Haar, G.R., Physical Principles of Medical Ultrasonics, Wiley, 2004, 2nd ed.CrossRefGoogle Scholar
  2. 2.
    ter Haar, G.R., Prog. Biophys. Mol. Biol., 2007, vol. 93, p.111.CrossRefGoogle Scholar
  3. 3.
    Vikram, S.D., Man, Z., and Bhatt, S., Ultrasound Clin., 2009, vol. 4, p.307.CrossRefGoogle Scholar
  4. 4.
    Summer, W. and Patrick, M.K., Ultrasonic Therapy. A Textbook for Physiotherapists, London: Elsevier, 1964.Google Scholar
  5. 5.
    Nyborg, W.L., et al., Biological Effects of Ultrasound: Mechanisms and Clinical Implications, National Council on Radiation Protection and Measurements, 1983.Google Scholar
  6. 6.
    Rybyanets, A.N. and Naumenko, A.A., Phys. Procedia, 2015, vol. 70, p. 1148.ADSCrossRefGoogle Scholar
  7. 7.
    Rybyanets, A.N., Naumenko, A.A., Sapozhnikov, O.A., and Khokhlova, V.A., Phys. Procedia, 2015, vol. 70, p. 1152.ADSCrossRefGoogle Scholar
  8. 8.
    Rybyanets, A.N., Berkovich, A.E., Rybyanets, T.V., et al., in Proc. Int. Conf. on Physics and Mechanics of New Materials and Their Applications (Azov, 2015), Nova sci., 2016, p.485.Google Scholar
  9. 9.
    Rybyanets, A.N., Shvetsova, N.A., Shvetsov, I.A., et al., Indian J. Sci. Technol., 2016, vol. 9, no. 42, p.342.Google Scholar
  10. 10.
    Rybyanets, A.N., IEEE Trans. Ultrason., Ferroelectr., Freq. Control, 2011, vol. 58, no. 7, p. 1492.CrossRefGoogle Scholar
  11. 11.
    Rybyanets, A.N., in Advanced Materials. Manufacturing, Physics, Mechanics and Applications, Parinov, I.A., Chang, S.-H., and Topolov, V.Yu., Eds., Springer, 2016, p.211.Google Scholar
  12. 12.
    Shvetsov, I.A., Shvetsova, N.A., Reznitchenko, A.N., and Rybyanets, A.N., in Advanced Materials Techniques, Physics, Mechanics and Applications, Parinov, I.A., Chang, S.-H., and Jani, M.A., Eds., Springer, 2017, p. 489.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • N. A. Shvetsova
    • 1
  • D. I. Makarev
    • 1
  • I. A. Shvetsov
    • 1
  • S. A. Shcherbinin
    • 1
  • A. N. Rybyanets
    • 1
  1. 1.Southern Federal UniversityRostov-on-DonRussia

Personalised recommendations