Advertisement

Formation of PZT Structures on Silicon

  • D. S. Seregin
  • A. -M. Baziruvikha
  • N. M. Kotova
  • K. A. Vorotilov
  • L. A. Delimova
  • N. V. Zaitzeva
  • A. V. Myakon’kikh
  • K. V. Rudenko
  • V. F. Lukichev
Proceedings of the XXI National Conference on Magnetoelectrics Physics

Abstract

Properties of thin PbZr0.52Ti0.48O3 (PZT) films on silicon substrates with Al2O3 and HfO2 dielectric barrier layers and LaNiO3 (LNO) conducting layers are studied. Barrier layers 2–10 nm thick are deposited on silicon wafers by via atomic-layer deposition (ALD). LNO layers are formed via chemical solution deposition. The critical HfO2 thickness required to prevent diffusion (upon which a perovskite phase forms in PZT films) is found to be 10 nm. The annealing temperature required for the formation of LNO crystalline structure is determined. It is shown that depositing an LNO conducting layer directly onto a silicon surface allows us to obtain PZT films with good crystallinity and electrophysical properties.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vorotilov, K.A., Mukhortov, V.M., and Sigov, A.S., Integrirovannye segnetoelektricheskie ustroistva (Integrated Ferroelectric Devices), Sigov, A.S., Ed., Moscow: Energoatomizdat, 2011.Google Scholar
  2. 2.
    Kotova, N., Podgorny, Yu., Seregin, D., et al., Ferroelectrics, 2014, vol. 465, p.54.CrossRefGoogle Scholar
  3. 3.
    Melo, M., Araujo, E.B., Shvartsman, V.V., et al., J. Appl. Phys., 2016, vol. 120, p. 054101.ADSCrossRefGoogle Scholar
  4. 4.
    Liu, C., Lin, S.X., Qin, M.H., et al., Appl. Phys. Lett., 2016, vol. 108, p. 112903.ADSCrossRefGoogle Scholar
  5. 5.
    Ma, B., Hu, Z., Koritala, R.E., et al., J. Mater. Sci.: Mater. Electron., 2015, vol. 26, no. 12, p. 9279.Google Scholar
  6. 6.
    Boni, A.G., Chirila, C., Pasuk, I., et al., Thin Solid Films, 2015, vol. 593, p.124.ADSCrossRefGoogle Scholar
  7. 7.
    Hu, Z., Ma, B., Liu, S., et al., Mater. Res. Bull., 2014, vol. 52, p.189.CrossRefGoogle Scholar
  8. 8.
    Seregin, D., Vorotilov, K., Sigov, A., and Kotova, N., Ferroelectrics, 2015, vol. 484, no. 1, p.43.CrossRefGoogle Scholar
  9. 9.
    Lu, G., Dong, H., Chen, J., and Cheng, J., J. Sol-Gel Sci. Technol., 2017, vol. 82, no. 2, p.530.CrossRefGoogle Scholar
  10. 10.
    Park, J.H., Kim, H.Y., Seok, K.H., et al., J. Appl. Phys., 2016, vol. 119, no. 12, p. 124108.ADSCrossRefGoogle Scholar
  11. 11.
    Ma, B., Hu, Z., Koritala, R.E., et al., J. Mater. Sci.: Mater. Electron., 2015, vol. 26, p. 9279.Google Scholar
  12. 12.
    Narayanan, M., Kwon, D.-K., Ma, B., and Balachandran, U., Appl. Phys. Lett., 2008, vol. 92, p. 252905.ADSCrossRefGoogle Scholar
  13. 13.
    Podgorny, Yu.V., Seregin, D.S., Sigov, A.S., and Vorotilov, K.A., Ferroelectrics, 2012, vol. 439, no. 1, p.56.CrossRefGoogle Scholar
  14. 14.
    Kotova, N.M., Vorotilov, K.A., Seregin, D.S., and Sigov, A.S., Inorg. Mater., 2014, vol. 50, no. 6, p.612.CrossRefGoogle Scholar
  15. 15.
    Tong, S., Narayanan, M., Ma, B., et al., Mater. Chem. Phys., 2013, vol. 140, p.427.CrossRefGoogle Scholar
  16. 16.
    Ma, B., Tong, S., Narayanan, M., et al., Mater. Res. Bull., 2011, vol. 46, p. 1124.CrossRefGoogle Scholar
  17. 17.
    Meng, X.J., Cheng, J.G., Sun, J.L., et al., J. Cryst. Growth, 2000, vol. 220, p.100.ADSCrossRefGoogle Scholar
  18. 18.
    Meng, X.J., Sun, J.L., Yu, J., et al., Appl. Phys. A, 2001, vol. 73, p.323.ADSCrossRefGoogle Scholar
  19. 19.
    Hu, S.H., Hu, G.J., Meng, X.J., et al., J. Cryst. Growth, 2004, vol. 260, p.109.ADSCrossRefGoogle Scholar
  20. 20.
    Shturman, I., Shter, G.E., Etin, A., and Grader, G.S., Thin Solid Films, 2009, vol. 517, p. 2767.ADSCrossRefGoogle Scholar
  21. 21.
    Kim, H., Kim, J.-H., and Choo, W.K., Integr. Ferroelectr., 2004, vol. 64, p.125.CrossRefGoogle Scholar
  22. 22.
    Lu, W., Zheng, P., Du, W., and Meng, Z., Mater. Electron., 2004, vol. 15, p. 739.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • D. S. Seregin
    • 1
  • A. -M. Baziruvikha
    • 1
  • N. M. Kotova
    • 1
  • K. A. Vorotilov
    • 1
  • L. A. Delimova
    • 2
  • N. V. Zaitzeva
    • 2
  • A. V. Myakon’kikh
    • 3
  • K. V. Rudenko
    • 3
  • V. F. Lukichev
    • 3
  1. 1.Moscow Technological University (MIREA)MoscowRussia
  2. 2.Ioffe InstituteRussian Academy of SciencesSt. PetersburgRussia
  3. 3.Physicotechnical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations