Advertisement

Raman Scattering on the Effective Soft Mode for Lithium Niobate Crystals

  • V. S. Gorelik
  • A. Yu. Pyatyshev
Article
  • 14 Downloads

Abstract

The evolution of Raman spectra in a wide range of temperatures that includes the ferroelectric transition point in lithium niobate single crystals is studied for polarization geometry X(ZZ)Y. In this geometry, the soft mode responsible for the phase transition distinguished by 1A1(TO)-type symmetry should appear in the spectra. Experimental studies show that the 1A1(TO) mode interacts resonantly with nonfundamental modes in the low-frequency region of the spectrum. Near the ferroelectric phase transition point, an isofrequency opalescence effect is observed that consists of an abrupt increase in Raman signal intensity at fixed frequencies near the excitation line.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abrahams, S.C., Reddy, J.M., and Bernstein, J.L., J. Phys. Chem. Solids, 1966, vol. 27, nos. 6–7, p.997.ADSCrossRefGoogle Scholar
  2. 2.
    Bergman, J.G., Ashkin, A., Ballman, A.A., et al., Appl. Phys. Lett., 1968, vol. 12, no. 3, p.92.ADSCrossRefGoogle Scholar
  3. 3.
    Schirmer, O.F., Thiemann, O., and Wohlecke, M.J., J. Phys. Chem. Solids, 1991, vol. 52, no. 1, p.185.ADSCrossRefGoogle Scholar
  4. 4.
    Schaufele, R.F. and Weber, M.J., Phys. Rev., 1966, vol. 152, no. 2, p.705.ADSCrossRefGoogle Scholar
  5. 5.
    Johnston, W.D., Jr. and Kaminov, I.P., Phys. Rev., 1968, vol. 168, no. 3, p. 1045.ADSCrossRefGoogle Scholar
  6. 6.
    Okamoto, Y., Wang, P.-C., and Scott, J.F., Phys. Rev. B, 1985, vol. 32, no. 10, p. 6787.ADSCrossRefGoogle Scholar
  7. 7.
    Surovtsev, N.V., Pugachev, A.M., Malinovsky, V.K., et al., Phys. Rev. B, 2005, vol. 72, no. 10, p. 104303.ADSCrossRefGoogle Scholar
  8. 8.
    Gorelik, V.S., Ivanova, S.V., Kucheruk, I.P., et al., Fiz. Tverd. Tela, 1976, vol. 18, no. 8, p. 2297.Google Scholar
  9. 9.
    Sidorov, N.V. and Palatnikov, M.N., Opt. Spectrosc., 2016, vol. 121, no. 6, p.842.ADSCrossRefGoogle Scholar
  10. 10.
    Gorelik, V.S., Tochilin, S.D., and Sushchinsky, M.M., J. Mol. Struct., 1986, vol. 143, p.83.ADSCrossRefGoogle Scholar
  11. 11.
    Gorelik, V.S. and Ivanova, S.V., Specific features of spectral intensity of scattered light near the point of phase transition in ferroelectric crystals, Preprint of Lebedev Phys. Inst., Moscow, 1984, no.3.Google Scholar
  12. 12.
    Ginzburg, V.L., Sov. Phys. Usp., 1963, vol. 5, p.649.ADSCrossRefGoogle Scholar
  13. 13.
    Ginzburg, V.L., Levanyuk, A.P., and Sobyanin, A.A., Usp. Fiz. Nauk, 1980, vol. 130, p.615.CrossRefGoogle Scholar
  14. 14.
    Gorelik, V.S. and Ivanova, S.V., Kratk. Soobshch. Fiz., 1981, no. 11, p.18.Google Scholar
  15. 15.
    Gorelik, V.S., Izv. Akad. Nauk SSSR, Ser. Fiz., 1985, vol. 49, no. 2, p.282.Google Scholar
  16. 16.
    Shiozaki, Y. and Mitsui, T., J. Phys. Chem. Solids, 1963, vol. 24, no. 8, p. 1057.ADSCrossRefGoogle Scholar
  17. 17.
    Landau, L.D. and Lifshitz, E.M., Kvantovaya mekhanika (nerelyativistskaya teoriya) (Quantum Mechanics: Non-Relativistic Theory), Moscow: Nauka, 1989.Google Scholar
  18. 18.
    Lyubarskii, G.Ya., Teoriya grupp i ee primenenie v fizike (Group Theory and Its Application in Physics), Moscow: GIFML, 1958.Google Scholar
  19. 19.
    Landau, L.D., Zh. Eksp. Teor. Fiz., 1937, vol. 7, p.19.Google Scholar
  20. 20.
    Gorelik, V.S., Umarov, B.S., and Umarov, M., Phys. Status Solidi (b), 1983, vol. 120, no. 1, p. 131.ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Bauman Moscow State Technical UniversityMoscowRussia
  3. 3.AO NPP IstokFryazino, Moscow oblastRussia

Personalised recommendations