Branches of zero sound excitations in asymmetric nuclear matter: The dependence on density

  • V. A. Sadovnikova
  • M. A. Sokolov
Proceedings of the LXVI International Conference on Nuclear Spectroscopy and the Structure of Atomic Nuclei


Results from calculating zero sound excitations in isospin asymmetric nuclear matter are presented. A polarization operator constructed in the random phase approximations is used in the calculations. Three branches of the complex solutions ωsτ(k), τ = p,n,np are presented. The type of branch depends on that of the considered branch damping. An imaginary part of the solution corresponds to the damping of collective excitations due to mixing with the background of noninteracting (1) proton particle–hole pairs (ω sp (k)), (2) neutron particle–hole pairs (ω sn (k)), and (3) both proton and neutron particle–hole pairs (ω snp (k)). The behavior of the solutions upon variations in density depends on the value of the asymmetry parameter.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sadovnikova, V.A. and Sokolov, M.A., Bull. Russ. Acad. Sci.: Phys., 2016, vol. 80, p. 981.CrossRefGoogle Scholar
  2. 2.
    Chen, L.-W., Web. Conf., 2015, vol. 88, p. 00017.CrossRefGoogle Scholar
  3. 3.
    Kolomiets, V.M., Sanzhur, A.I., and Shlomo, S., Phys. Rev. C, 2003, vol. 68, p. 014614.ADSCrossRefGoogle Scholar
  4. 4.
    Lui, B., Greco, V., Baran, V., et al., Phys. Rev. C, 2002, vol. 65, p. 045201.ADSGoogle Scholar
  5. 5.
    Sammarruca, F., Phys. Rev. C, 2014, vol. 90, p. 064312.ADSCrossRefGoogle Scholar
  6. 6.
    Kolomeitsev, E.E. and Voskresensky, D.N., Phys. At. Nucl., 2011, vol. 74, p. 1316.CrossRefGoogle Scholar
  7. 7.
    Greco, V., Colonna, M., Di Toro, M., and Matera, F., Phys. Rev. C, 2003, vol. 67, p. 015203.ADSCrossRefGoogle Scholar
  8. 8.
    Sadovnikova, V.A., Phys. At. Nucl., 2007, vol. 70, p. 989.CrossRefGoogle Scholar
  9. 9.
    Sadovnikova, V.A., Bull. Russ. Acad. Sci.: Phys., 2011, vol. 75, p. 905.CrossRefGoogle Scholar
  10. 10.
    Migdal, A.B., Zaretsky, D.F., and Lushnikov, A.A., Nucl. Phys. A, 1965, vol. 66, p. 193.CrossRefGoogle Scholar
  11. 11.
    Migdal, A.B., Teoriya konechnykh fermi-sistem i svoistva atomnykh yader (Theory of Finite Fermi Systems and the Properties of Atomic Nuclei), Moscow: Nauka, 1983.Google Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  1. 1.National Research Center Kurchatov InstituteKonstantinov Institute of Nuclear PhysicsGatchina, St. PetersburgRussia
  2. 2.St. Petersburg Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations