Advertisement

The five-dimensional Dirac equation in the theory of algebraic spinors

Proceedings of the LXVI International Conference on Nuclear Spectroscopy and the Structure of Atomic Nuclei
  • 21 Downloads

Abstract

The Dirac equation is considered in five-dimensional spaces with signatures (2,3), (4,1) and (0,5). The algebraic spinor formalism with the application of fermionic variables is used as the basis of real Clifford algebras and the module over this algebra. It is shown that solutions to the five-dimensional Dirac equation in spaces with signatures (2,3) and (4,1) can be expanded over solutions with zero value of the fifth component of the generalized momentum, and the equation is equivalent to an equation in four-dimensional spacetime.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kocinski, J., J. Phys. A: Math. Gen., 1999, vol. 32, p. 4257.ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Yappa, Yu.A., Vvedenie v teoriyu spinorov i ee prilozheniya v fizike (Introduction to Spinor Theory and Its Applications in Physics), St. Petersburg: S.-Peterb. Gos. Univ., 2004.Google Scholar
  3. 3.
    Francis, M.R. and Kosowsky, A., Ann. Phys., 2005, vol. 317, p. 383.ADSCrossRefGoogle Scholar
  4. 4.
    Monakhov, V.V., Phys. Part. Nucl., 2017, vol. 48, p. 836.CrossRefGoogle Scholar
  5. 5.
    Monakhov, V.V., Theor. Math. Phys., 2016, vol. 186, p. 70.CrossRefGoogle Scholar
  6. 6.
    Cartan, E., The Theory of Spinors, Cambridge, MA: MIT. Press, 1966.MATHGoogle Scholar
  7. 7.
    Fushchich, V.I., Theor. Math. Phys., 1970, vol. 4, p. 890.CrossRefGoogle Scholar
  8. 8.
    Rodrigues, W.A., Jr. and de Oliveira, E.C., The Many Faces of Maxwell, Dirac and Einstein Equations: A Clifford Bundle Approach, Springer: Heidelberg, 2016.CrossRefMATHGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations