Model studies of THz-range generation via down conversion of the radiation of Ti:Sapphire lasers in LBO crystals

  • D. M. Lubenko
  • V. F. Losev
  • Yu. M. Andreev
  • G. V. Lanskii
Proceedings of the XV International Conference “Luminescence and Laser Physics” (LLP-2016)
  • 8 Downloads

Abstract

Results from model studies of the possibility of creating a source of high-power picosecond pulses of terahertz radiation via optical rectification and phase-matched down conversion of femtosecond pulses of Ti:Sapphire lasers in a nonlinear LBO crystal are presented. Modified Sellmeier equations are used in calculations. It is shown that the lengths of coherence for the generation of THz radiation at frequencies higher than 0.5 THz are more than 0.5 mm, allowing the technologically simple production of periodic structures. The maximum length of coherence is achieved for ss type interactions in the XY plane. Phase-matched sf type down conversion is possible only in the XY plane, including noncritical spectral matching conditions. Maximum efficiency can be expected for three-wave interactions with the polarization of interacting waves parallel to Z axis.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stepanov, A.G., Henin, S., Petit, Y., Bonacina, L., Kasparian, J., and Wolf, J.-P., Appl. Phys. B, 2010, vol. 101, p. 11.ADSCrossRefGoogle Scholar
  2. 2.
    Fülöp, J.A., Pálfalvi, L., Klingebiel, S., et al., Opt. Lett., 2012, vol. 37, no. 4, p. 557.ADSCrossRefGoogle Scholar
  3. 3.
    Guo, J., Xie, J.J., Li, D.J., et al., Light: Sci. Appl., 2015, vol. 4, p. e362.CrossRefGoogle Scholar
  4. 4.
    Hoffmann, M.C. and Fülöp, J.A., J. Phys. D: Appl. Phys., 2011, vol. 44, p. 083001.ADSCrossRefGoogle Scholar
  5. 5.
    Nikogosyan, D.N., Nonlinear Optical Crystals: A Complete Survey, New York: Springer, 2005, pp. 19–35.Google Scholar
  6. 6.
    Hayashi, S., Nawata, K., Sakai, H., et al., Opt. Express, 2012, vol. 20, no. 3, p. 2881.ADSCrossRefGoogle Scholar
  7. 7.
    Nagai, M., Jewariya, M., Ichikawa, Y., et al., Opt. Express, 2009, vol. 17, no. 14, p. 11543.ADSCrossRefGoogle Scholar
  8. 8.
    Chen, C., Wu, Y., Jiang, A., et al., J. Opt. Soc. Am. B, 1989, vol. 6, no. 4, p. 616.ADSCrossRefGoogle Scholar
  9. 9.
    Kato, K., IEEE J. Quantum Electron., 1990, vol. 26, no. 7, p. 1173.ADSCrossRefGoogle Scholar
  10. 10.
    Waasem, N., Fieberg, S., Hauser, J., and Gomes, G., Rev. Sci. Instrum., 2013, vol. 84, p. 023109.ADSCrossRefGoogle Scholar
  11. 11.
    Kokh, A., Kononova, N., Mennerat, G., et al., J. Cryst. Growth, 2010, vol. 312, p. 1774.ADSCrossRefGoogle Scholar
  12. 12.
    Kokh, K.A., Molloy, J.F., Naftaly, M., et al., Mater. Chem. Phys., 2015, vol. 154, p. 152.CrossRefGoogle Scholar
  13. 13.
    Andreev, Yu.M., Badikov, V.V., Voevodin, V.G., et al., Quantum Electron., 2001, vol. 31, no. 12, p. 1075.ADSCrossRefGoogle Scholar
  14. 14.
    Furukawa, Y., Markgraf, S.A., Sato, M., et al., Appl. Phys. Lett., 1994, vol. 65, p. 1480.ADSCrossRefGoogle Scholar
  15. 15.
    Hu, Z., Zhao, Y., Yue, Y., and Yu, X., J. Cryst. Growth, 2011, vol. 335, p. 133.ADSCrossRefGoogle Scholar
  16. 16.
    Kokh, A., Vlezko, V., Kokh, K., et al., J. Cryst. Growth, 2012, vol. 360, p. 158.ADSCrossRefGoogle Scholar
  17. 17.
    Antsygin, V.D., Mamrashev, A.A., Nikolaev, N.A., et al., Opt. Commun., 2013, vol. 309, p. 333.ADSCrossRefGoogle Scholar
  18. 18.
    Andreev, Yu.M., Naftaly, M., Molloy, J.F., et al., Laser Phys. Lett., 2015, vol. 12, p. 115402.ADSCrossRefGoogle Scholar
  19. 19.
    Svetlichnyi, V.A., Naftaly, M., Molloy, J.F., et al., Opt. Commun., 2016, vol. 365, p. 14.ADSCrossRefGoogle Scholar
  20. 20.
    Alekseev, S.V., Aristov, A.I., Ivanov, N.G., et al., Laser Part. Beams, 2013, vol. 31, p. 17.ADSCrossRefGoogle Scholar
  21. 21.
    Alekseev, S.V., Ivanov, M.V., Ivanov, N.G., Losev, V.F., Mesyats, G.A., Panchenko, Yu.N., and Ratakhin, N.A., Russ. Phys. J, 2015, vol. 58, p. 1087.CrossRefGoogle Scholar
  22. 22.
    Andreev, Yu.M., Kokh, K.A., Lanskii, G.V., et al., Opt. Lett., 2016, vol. 41, no. 19, p. 4405.Google Scholar
  23. 23.
    Yu, B.L., Zeng, F., Kartazayev, V., Alfano, R.R., and Mandal, K.C., Appl. Phys. Lett., 2005, vol. 87, p. 182104.ADSCrossRefGoogle Scholar
  24. 24.
    Naftaly, M., Molloy, J.F., Andreev, Yu.M., et al., Opt. Express, 2015, vol. 23, no. 25, p. 32820.ADSCrossRefGoogle Scholar
  25. 25.
    Nahata, A., Weling, A.S., and Heinz, T.F., Appl. Phys. Lett., 1996, vol. 69, no. 16, p. 2321.ADSCrossRefGoogle Scholar
  26. 26.
    Maslyuk, V.V., Bredow, T., and Pfnür, H., Eur. Phys. J. B, 2004, vol. 42, p. 461.ADSCrossRefGoogle Scholar
  27. 27.
    Xia, H.R., Li, L.X., Yu, H., et al., J. Mater. Res., 2001, vol. 16, p. 3464.ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • D. M. Lubenko
    • 1
    • 2
  • V. F. Losev
    • 1
    • 4
  • Yu. M. Andreev
    • 2
    • 3
  • G. V. Lanskii
    • 2
    • 3
  1. 1.Institute of High Current Electronics, Siberian BranchRussian Academy of SciencesTomskRussia
  2. 2.National Research Tomsk State UniversityTomskRussia
  3. 3.Institute for the Monitoring of Climatic and Ecological Systems, Siberian BranchRussian Academy of SciencesTomskRussia
  4. 4.National Research Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations