ZnFe2 – xCrxO4 Ferrites (x = 0.0–2.0) by Solution-Combustion Synthesis Using Glycine as a Fuel: Influence of Cr3+ Doping

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.


  1. 1

    Das, S., Bououdina, M., and Manoharan, C., The influence of cationic surfactant CTAB on optical, dielectric and magnetic properties of cobalt ferrite nanoparticles, Ceram Int., 2020, vol. 46, no. 8, pp. 1705–1716. https://doi.org/10.1016/j.ceramint.2020.01.202

    CAS  Article  Google Scholar 

  2. 2

    Zhang, H., Liu, L., Zhang, X., Zhang, S., and Meng, F., Microwave-assisted solvothermal synthesis of shape-controlled CoFe2O4 nanoparticles for acetone sensor, J. Alloys Compd., 2019, vol. 788, pp. 1103–1112. https://doi.org/10.1016/j.jallcom.2019.03.009

    CAS  Article  Google Scholar 

  3. 3

    Aggarwal, N. and Narang, S.B., Magnetic characterization of Nickel-Zinc spinel ferrites along with their microwave characterization in K u band, J. Magn. Magn. Mater., 2020, vol. 513, 167052. https://doi.org/10.1016/j.jmmm.2020.167052

    CAS  Article  Google Scholar 

  4. 4

    Phor, L. and Kumar, V., Structural, thermomagnetic, and dielectric properties of Mn0.5Zn0.5GdxFe2–xO4 (x = 0, 0.025, 0.050, 0.075, and 0.1), J. Adv. Ceram., 2020, vol. 9, no. 2, pp. 243–254.

    CAS  Article  Google Scholar 

  5. 5

    Shankar, S., Thakur, O.P., and Jayasimhadri, M., Conductivity behavior and impedance studies in BaTiO3–CoFe2O4 magnetoelectric composites, Mater. Chem. Phys., 2019, vol. 234, pp. 110–121. https://doi.org/10.1016/j.matchemphys.2019.05.095

    CAS  Article  Google Scholar 

  6. 6

    Gandhad, S.S., Patil, P.M., and Mathad, S.N., Effect of aluminum doping on structural and mechanical properties of Ni–Mg ferrites, Int. J. Self-Propag. High-Temp. Synth., 2019, vol. 28, no. 4, pp.271–273. https://doi.org/10.3103/S1061386219040046

    Article  Google Scholar 

  7. 7

    Shannon, R.D., Revised effective ionic radii and systematic studies of interatomie distances in halides and chalcogenides, Acta Crystallogr. A, 1976, vol. 32, no. 5, pp.751–767. https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  8. 8

    Abdellatif, M.H., Azab, A.A., and Salerno, M., Effect of rare earth doping on the vibrational spectra of spinel Mn–Cr ferrite, Mater. Res. Bull., 2018, vol. 97, pp. 260–264. https://doi.org/10.1016/j.materresbull.2017.09.012

    CAS  Article  Google Scholar 

  9. 9

    Amer, M.A., Matsuda, A., Kawamura, G., El-Shater, R., Meaz, T., and Fakhry, F., Structural, magnetic, vibrational and optical studies of structure transformed spinel Fe2+–Cr nanoferrites by sintering process, J. Alloys Compd., 2018, vol. 735, pp. 975–985. https://doi.org/10.1016/j.jallcom.2017.11.198

    CAS  Article  Google Scholar 

  10. 10

    Harish, K.N., Naik Bhojya, H.S., Prashanth, P.N. and Viswanath, R., Synthesis, enhanced optical and photocatalytic study of Cd–Zn ferrites under sunlight. Catal. Sci. Technol., 2012, vol. 2, no. 5, pp. 1033–1039. https://doi.org/10.1039/C2CY00503D

    CAS  Article  Google Scholar 

  11. 11

    Mansour, S.F., Abdo, M.A., and Kzar, F.L., Effect of Cr dopant on the structural, magnetic and dielectric properties of Cu–Zn nanoferrites, J. Magn. Magn. Mater., 2018, vol. 465, pp.176–185. https://doi.org/10.1016/j.jmmm.2018.05.104

    CAS  Article  Google Scholar 

  12. 12

    Mansour, S.F., Abdo, M.A., and El-Dek, S.I., Improvement of physicomechanical properties of Mg–Zn nanoferrites via Cr3+ doping, J. Magn. Magn. Mater., 2017, vol. 422, pp. 105–111. https://doi.org/10.1016/j.jmmm.2016.07.049

    CAS  Article  Google Scholar 

  13. 13

    Khalaf, K.A.M., Al-Rawas, A.D., Widatallah, H.M., Al-rashdi, K.S., Sellai, A., Shongwe, M., and Al-Rajhi, A.H., Influence of Zn2+ ions on the structural and electrical properties of Mg1–xZnxFeCrO4 spinels, J. Alloys Compd., 2016, vol. 657, pp.733–747. https://doi.org/10.1016/j.jallcom.2015.10.157

    CAS  Article  Google Scholar 

  14. 14

    Gabal, M.A., Angari, Y.M., and Al-Agel, F.A., Synthesis, characterization and magnetic properties of Cr-substituted Co–Zn ferrite nanopowders, J. Mol. Struct., 2013, vol. 1035, pp. 341–347. https://doi.org/10.1016/j.molstruc.2012.10.061

    CAS  Article  Google Scholar 

  15. 15

    Amer, M.A., Meaz, T.M., Mostafa, A.G., and El-Ghazally, H.F., Annealing effect on the structural and magnetic properties of the CuAl0.6Cr0.2Fe1.2O4 nano-ferrites, Mater. Res. Bull., 2015, vol. 67, pp. 207–214. https://doi.org/10.1016/j.materresbull.2015.03.031

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding authors

Correspondence to J. F. Montoya or E. A. Chavarriaga or S. Villada-Gil.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Montoya, J.F., Chavarriaga, E.A., Villada-Gil, S. et al. ZnFe2 – xCrxO4 Ferrites (x = 0.0–2.0) by Solution-Combustion Synthesis Using Glycine as a Fuel: Influence of Cr3+ Doping. Int. J Self-Propag. High-Temp. Synth. 29, 243–245 (2020). https://doi.org/10.3103/S1061386220040081

Download citation


  • solution combustion synthesis
  • ZnFe2–xCrxO4 ferrites