Skip to main content
Log in

Relay of Combustion Wave through a Thin Wedge-Shaped Obstacle

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

The relay of combustion wave through a thin wedge-shaped obstacle was explored by 2D mathematical modeling and experimentally, with special emphasis on the role of wedge parameters. Predictions of theory well agreed with experiment. Steady passage of combustion wave through the obstacle was found to occur at some optimal wedge configurations, which should be kept in mind in some special applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Vadchenko, S.G., Boyarchenko, O.D., Sytschev, A.E., and Sachkova, N.V., SHS joining in the Ti–Si–C system: Structure of transition layer, Int. J. Self-Propag. High-Temp. Synth., 2013, vol. 22, no. 1, pp. 46–51. https://doi.org/10.3103/S1061386213010135

    Article  CAS  Google Scholar 

  2. Kamynina, O.K., Vadchenko, S.G., Shchukin, A.S., Kovalev, I.D., and Sytschev, A.E., SHS joining in the Ti–C–Si system. Int. J. Self-Propag. High-Temp. Synth., 2016, vol. 25, no. 1, pp. 62–65. https://doi.org/10.3103/S1061386216010064

    Article  CAS  Google Scholar 

  3. Sytschev, A.E., Vrel, D., Boyarchenko, O.D., Roshchupkin, D.V., and Sachkova, N.V., Combustion synthesis in bi-layered (Ti–Al)/(Ni–Al) system, J. Mater. Process. Technol., 2017, vol. 240, pp. 60–67. https://doi.org/10.1016/j.jmatprotec.2016.09.010

    Article  CAS  Google Scholar 

  4. Chen, S.P., Dong, F., Fan, W.H., Meng, Q.S., and Munir, Z.A., Interface kinetics of combustion–diffusion bonding of Ni3Al/Ni and TiAl/Ti under direct current field, J. Mater. Sci., 2013, no. 48, pp. 1268–1274. https://doi.org/10.1007/s10853-012-6869-1

  5. Simonenko, V.N., Zarko, V.E., Kiskin, A. B., Gladun, V.D., Kashporov, L.Y., and Silin, N.A., Stability of the combustion of composite metallized samples, Combust., Explos., Shock Waves, 1983, vol. 19, no. 5, pp. 590–592. https://doi.org/10.1007/BF00750429

    Article  Google Scholar 

  6. Gusachenko, L.K., Zarko, V.E., and Rychkov, A.D., Effect of melting on dynamic combustion behavior of energetic materials, J. Propul. Power, 1999, vol. 15, no. 6, pp. 816–822. https://doi.org/10.2514/2.5501

    Article  CAS  Google Scholar 

  7. Kostin, S.V., Strunina, A.G., and Barzykin, V.V., Influence of thermophysical parameters on the stability of a combustion wave on passing through an interface between gasless systems, Combust., Explos., Shock Waves, 1987, vol. 23, no. 6, pp. 715–720. https://doi.org/10.1007/BF00742526

    Article  Google Scholar 

  8. Krainov, A.Yu., Influence of thermophysical characteristics of an inert obstacle and heat losses on combustion wave propagation, Combust., Explos., Shock Waves, 1987, vol. 23, no. 3, pp. 676–678. https://doi.org/10.1007/BF00742519

    Article  Google Scholar 

  9. Boyarchenko, O.D., Kostin, S.V., Krishenik, P.M., Rogachev, S.A., and Sytschev, A.E., Combustion of layered SHS systems: Thermal conditions at the interface, Int. J. Self-Propag. High-Temp. Synth., 2015, vol. 24, no. 3, pp. 115–118. https://doi.org/10.3103/S1061386215030048

    Article  CAS  Google Scholar 

  10. Krishenik, P.M., Kostin, S.V., and Rogachev, S.A., Combustion wave stability in transition through the interface of gasless systems, Russ. J. Phys. Chem. B, 2018, vol. 12, no. 4, pp. 677–683. https://doi.org/10.1134/S1990793118040255

    Article  CAS  Google Scholar 

  11. Firsov, A.N. and Shkadinskii, K.G., Combustion of gasless compositions in the presence of heat losses, Combust., Explos., Shock Waves, 1987, vol. 23, no. 3, pp. 288–294. https://doi.org/10.1007/BF00748784

    Article  Google Scholar 

  12. Samarskii, A.A., The Theory of Difference Schemes, Boca Raton: Taylor and Francis, 2001, pp. 543–564. https://doi.org/10.1201/9780203908518

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. M. Krishenik or S. A. Rogachev.

Additional information

Translated by Yu. Scheck

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishenik, P.M., Kostin, S.V. & Rogachev, S.A. Relay of Combustion Wave through a Thin Wedge-Shaped Obstacle. Int. J Self-Propag. High-Temp. Synth. 29, 191–195 (2020). https://doi.org/10.3103/S1061386220040056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386220040056

Keywords:

Navigation