Skip to main content
Log in

The Effect of Si Substitution for SiC on SHS in the Ti–Si–C System

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

Investigated was the effect of Si substitution for SiC on SHS in the Ti–Si–C system. Starting powders were intermixed to obtain 3Ti–SiC–C and 3Ti–Si–2C green mixtures and then green compacts by uniaxial pressing. The influence of heating rate, reactor temperature, and replacement of SiC by Si was studied by XRD, SEM, and TEM. In combustion products obtained in optimized conditions, Ti3SiC2 was found to be predominant. In comparison with conventional methods, our products obtained in a one-step low-temperature process contained minimal amounts of undesired impurities and required no finishing processes such as chemical purification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goesmann, F., Wenzel, R., and Schmid-Fetzer, R., Preparation of Ti3SiC2 by electron-beam-ignited solidstate reaction, J. Am. Ceram. Soc., 1998, vol. 81, no. 11, pp. 3025–3028. doi 10.1111/j.1151-2916.1998.tb02733.x

    Article  Google Scholar 

  2. Barsoum, M., El-Raghy, T., and Radovic, M., Ti3SiC2: A Layered machinable ductile carbide, Int. Ceram. Rev., 2000, vol. 49, no. 4, pp. 226–233.

    Google Scholar 

  3. http://www.u.arizona.edu/~liddelow/structure.html.

  4. Du, Y., Schuster, J.C., Seifert, H., and Aldinger, F., Experimental investigation and thermodynamic calculation of the titanium–silicon–carbon system, J. Am. Ceram. Soc., 2000, vol. 83, no. 1, pp. 197–203. doi 10.1111/j.1151-2916.2000.tb01170.x

    Article  Google Scholar 

  5. Goto, T. and Hirai, T., Chemically vapor deposited Ti3SiC2, Mater. Res. Bull., 1987, vol. 22, no. 9, pp. 1195–1201.

    Article  Google Scholar 

  6. Barsoum, M.W. and El-Raghy, T., Synthesis and characterization of a remarkable ceramic: Ti3SiC2, J. Am. Ceram. Soc., 1996, vol. 79, no. 7, pp. 1953–1956. doi 10.1111/j.1151-2916.1996.tb08018.x

    Article  Google Scholar 

  7. Riley, D.P., Kisi, E.H., Wu, E., and McCallum, A., Self-propagating high-temperature synthesis of Ti3SiC2 from 3Ti + SiC + C reactants, J. Mater. Sci. Lett., 2003, vol. 22, no. 15, pp. 1101–1104. doi 10.1023/A:1024995126534

    Article  Google Scholar 

  8. Racault, C., Langlais, F., and Naslain, R., Solid-state synthesis and characterization of the ternary phase Ti3SiC2, J. Mater. Sci., 1994, vol. 29, no. 13, pp. 3384–3392. doi 10.1007/BF00352037

    Article  Google Scholar 

  9. El-Raghy, T. and Barsoum, M.W., Processing and mechanical properties of Ti3SiC2: I. Reaction path and microstructure evolution, J. Am. Ceram. Soc., 1999, vol. 82, no. 10, pp. 2849–2854. doi 10.1111/j.1151-2916.1999.tb02166.x

    Article  Google Scholar 

  10. Riley, D.P., Kisi, E.H., Hansen, T.C., and Hewat, W., Self-propagating high-temperature synthesis of Ti3SiC2: I. Ultra-high-speed neutron diffraction study of the reaction mechanism, J. Am. Ceram. Soc., 2002, vol. 85, no. 10, pp. 2417–2424. doi 10.1111/j.1151-2916.2002.tb00474.x

    Article  Google Scholar 

  11. Tayebifard, S.A., The effect of aluminum additive on phase transformation and microstructure of SHS-pro-duced MoSi2-based compounds, Ph.D. Thesis, Tehran: Materials and Energy Research Center, 2006.

    Google Scholar 

  12. Pampuch, R., Lis, J., Stobierski, L., and Tymkiewicz, M., Solid combustion synthesis of Ti3SiC2, J. Eur. Ceram. Soc., 1989, vol. 5, no. 5, pp. 283–287. https://doi.org/10.1016/0955-2219(89)90022-8.

    Article  Google Scholar 

  13. Feng, A., Orling, T., and Munir, Z.A., Field-activated pressure-assisted combustion synthesis of polycrystalline Ti3SiC2, J. Mater. Res., 1999, vol. 14, no. 3, pp. 925–939. https://doi.org/10.1557/JMR.1999.0124.

    Article  Google Scholar 

  14. Grigoryan, H.E., Rogachev, A.S., Ponomarev, V.I., and Levashov, A.E., Product structure formation at gasless combustion in the Ti–Si–C system, Int. J. Self-Propag. High-Temp. Synth., 1998, vol. 7, no. 4, pp. 507–516.

    Google Scholar 

  15. Grigoryan, H.E., Rogachev, A.S., and Sytschev, A.E., Gasless combustion in the Ti–Si–C system, Int. J. Self-Propag. High-Temp. Synth., 1997, vol. 6, no. 1, pp. 29–39.

    Google Scholar 

  16. Grigoryan, H.E., Rakhbari, R.G., Rogachev, A.S., Levashov, E.A., Ponomarev, V.I., Sheveiko, A.N., Shtanskii, D.V., and Ivanov, A.N., Structure and properties of composite targets formed upon combustion in the Ti–Si–C system, Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall., 2000, no. 1, pp. 55–69.

    Google Scholar 

  17. Lis, J., Pampuch, R., Piekarczyk. J., and Stobierski, L., New ceramics based on Ti3SiC2, Ceram. Int., 1993, vol. 19, no. 4, pp. 219–222. http://dx.doi.org/10.1016/0272-8842(93)90052-S

    Article  Google Scholar 

  18. Radovic, M., Barsoum, M.W., El-Raghy, T., and Wiederhorn, S.M., Tensile creep of fine grained (3–5 μm) Ti3SiC2 in the 1000–1200°C temperature range, Acta Mater., 2001, vol. 49, no. 19, pp. 4103–4112. http://dx.doi.org/10.1016/S1359-6454(01)00243-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Tayebifard.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tayebifard, S.A., Yazdani-Rad, R. The Effect of Si Substitution for SiC on SHS in the Ti–Si–C System. Int. J Self-Propag. High-Temp. Synth. 27, 51–54 (2018). https://doi.org/10.3103/S1061386218010107

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386218010107

Keywords

Navigation