Advertisement

Thermal Explosion in Nb–Si Mixtures: Influence of Mechanical Activation

  • O. A. Shkoda
Article

Abstract

Influence of mechanical activation (MA) on the SHS of niobium silicides from the elements in a mode of thermal explosion (TE) was explored. Duration of preliminary MA, critical and maximal temperatures of TE, and phase composition of end product were determined, and the conditions for preparation of single-phase NbSi2 as a final product were found.

Keywords

SHS thermal explosion mechanical activation Nb–Si system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rogachev, A.S. and Mukasyan, A.S., Combustion for Material Synthesis, Boca Raton–London–New York: CRC Press, 2015, ch. 1.Google Scholar
  2. 2.
    Frank-Kamenetskii, D.A., Diffuziya i teploperedacha v khimicheskoi kinetike (Diffusion and Heat Transfer in Chemical Kinetics), Moscow: Nauka, 1987, ch. 6, 7.Google Scholar
  3. 3.
    Barzykin, V.V., High-temperature synthesis in a thermal explosion regime, Int. J. Self-Propag. High-Temp. Synth, 1993, vol. 2, no. 4, pp. 390–405.Google Scholar
  4. 4.
    Merzhanov, A.G., Ozerkovskaya, N.I., and Shkadisky, K.G., Thermal explosion as a method for high-temperature synthesis in inorganic systems, Khim. Fiz., 2004, vol. 23, no. 8, pp. 67–74.Google Scholar
  5. 5.
    Merzhanov, A.G., Worldwide evolution and present status of SHS as a branch of modern R & D, Int. J. Self-Propag. High-Temp. Synth., 1997, vol. 6, no. 2, pp. 119–163.Google Scholar
  6. 6.
    Barzykin, V.V., Thermal explosion in process engineering of materials, Tekh. Mashinostr., 2003, no. 1, pp. 44–52.Google Scholar
  7. 7.
    Itin, V.I., Bratchikov, A.D., and Postnikova, L.N., Combustion and thermal explosion for synthesis of intermetallics and related alloying agents, Poroshk. Metall., 1980, no. 5, pp. 24–28.Google Scholar
  8. 8.
    Filimonov, V.Yu., Korchagin, M.A., Evstigneev, V.V., and Lyakhov, N.Z., Anomalous decrease in the activation energy and initiation temperature of a thermal explosion in the mechanically activated composition 3Ni + Al, Dokl. Phys., 2009, vol. 54, no. 6, pp 277–280. doi 10.1134/S1028335809060068CrossRefGoogle Scholar
  9. 9.
    Filimonov, V.Yu., Korchagin, M.A., and Lyakhov, N.Z., Kinetics of mechanically activated high temperature synthesis of Ni3Al in the thermal explosion mode, Intermetallics, 2011, vol. 19, no. 7, pp. 833–840. http://doi.org/. doi 10.1016/j.intermet.2010.11.028CrossRefGoogle Scholar
  10. 10.
    Filimonov, V.Yu., Korchagin, M.A., Ditenberg, I.A., Tyumentsev, A.N., and Lyakhov, N.Z., High-temperature synthesis of single-phase Ti3Al intermetallic compound in mechanically activated powder mixture, Powder Technol., 2013, vol. 335, no. 2, pp. 606–613. http://doi.org/10.1016/j.powtec.2012.11.022CrossRefGoogle Scholar
  11. 11.
    Korchagin, M.A., Thermal explosion in mechanically activated low-caloric compositions, Combust. Explos. Shock Waves, 2015, vol. 51, no. 5, pp. 578–586. doi 10.1134/S0010508215050093CrossRefGoogle Scholar
  12. 12.
    Terekhova, O.G., Shkoda, O.A, Maksimov, Yu.M., and Chalykh, L.D., Mechanical activation of silicon and niobium and its influence on SHS, Int. J. Self-Propag. High-Temp. Synth., 1999, vol. 8, no. 3, pp. 299–306.Google Scholar
  13. 13.
    Korchagin, M.A., Filimonov, V.Yu., Smirnov, E.V., and Lyakhov, N.Z., Thermal explosion in mechanoactivated 3Ni + Al mixtures, Int. J. Self-Propag. High-Temp. Synth., 2009, vol. 18, no. 2, pp. 133–136. doi 10.3103/S1061386209020113CrossRefGoogle Scholar
  14. 14.
    Korchagin, M.A. and Lyakhov, N.Z., Self-propagating high-temperature synthesis in mechanoactivated compositions, Russ. J. Phys. Chem. B, 2008, vol. 2, no. 1, pp. 77–82. doi 10.1134/S1990793108010120Google Scholar
  15. 15.
    Kiseleva, T.Yu., Letsko, A.I., Talako, T.L., Kovaleva, S.A., Grigorieva, T.F., Novakova, A.A., and Lyakhov, N.Z., Mechanochemically synthesized powder precursors local structure influence on the microstructure of SHS Fe2O3/Fe/Zr/ZrO2 composites, Nanotechnol. Russ., 2015, vol. 10, no. 3, pp. 220–230. doi 10.1134/S1995078015020123CrossRefGoogle Scholar
  16. 16.
    Talako, T.L., Influence of mechanical activation on self-propagating high-temperature synthesis of materials, Izv. Nats. Akad. Nauk Belarusi, Ser. Fiz.-Tekh. Nauk, 2014, no. 1, pp. 25–32.Google Scholar
  17. 17.
    Bernard, F. and Gaffet, E., Mechanical alloying in the SHS research, Int. J. Self-Propag. High-Temp. Synth., 2001, vol. 10, no. 2, pp. 109–131.Google Scholar
  18. 18.
    Korchagin, M.A. and Bokhonov, B.B., Combustion of mechanically activated 3Ti + 2BN mixtures, Combust. Explos. Shock Waves, 2010, vol. 46, no. 2, pp. 170–177. doi 10.1007/s10573-010-0026-4CrossRefGoogle Scholar
  19. 19.
    Karpova, M.I., Vnukova, V.I., Korzhova, V.P., Stroganova, T.S., Zheltyakova, I.S., Prokhorov, D.V., Gnesin, I.B., Kiika, V.M., Kolobov, Yu.R., Golosov, E.V., and Nekrasov, A.N., Structure and mechanical properties of an eutectic high-temperature Nb–Si alloy grown by directional solidification, Russ. Metall., 2014, no. 4, pp. 267–274. doi 10.1134/S003602951404003XCrossRefGoogle Scholar
  20. 20.
    Varma, A., Rogachev, A.S., Mukasyan, A.S., and Hwang, S., Combustion synthesis of advanced materials: Principles and applications, Adv. Chem. Eng., 1998, vol. 24, pp. 79–226.CrossRefGoogle Scholar
  21. 21.
    Varma, A. and Mukasyan, A.S., Combustion synthesis of advanced materials: Fundamentals and applications, Korean J. Chem. Eng., 2004, vol. 21, no. 2, pp. 527–536.CrossRefGoogle Scholar
  22. 22.
    Shkoda, O.A., Terekhova, O.G., Kasatsky, N.G., and Chalych, L.D., The effect of mechanical activation of components on the synthesis of niobium silicides in a thermal explosion mode, Abstr. Int. Conf. on Mechanochemical Synthesis and Sintering, Novosibirsk, 2004, p. 83.Google Scholar
  23. 23.
    Shkoda, O.A. and Terekhova, O.G., SHS in the Nb–Si system: Influence of mechanical alloying, Int. J. Self-Propag. High-Temp. Synth., 2016, vol. 25, no. 1, pp. 14–16. doi 10.3103/S106138621601012XCrossRefGoogle Scholar
  24. 24.
    Shkoda, O.A. and Terekhova, O.G., Single-phase NbSi2 by mechanoactivated SHS, Int. J. Self-Propag. High-Temp. Synth., 2017, vol. 26, no. 1, pp. 83–85. doi 10.3103/S1061386216040099CrossRefGoogle Scholar
  25. 25.
    Shkoda, O.A., Influence of preliminary mechanical activation conditions on thermal explosion characteristics of the titanium–nickel powder system, Inorg. Mater.: Appl. Res., 2016, vol. 7, no. 3, pp. 429–433. doi 10.1134/S2075113316030187CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Department of Structural Macrokinetics, Tomsk Scientific Center, Siberian BranchRussian Academy SciencesTomskRussia

Personalised recommendations