Synthesis and Structural Analysis of Co–Zn–Cd Ferrite by Williamson–Hall and Size–Strain Plot Methods

Article
  • 5 Downloads

Abstract

The work aimed at studying the structural properties of Cd-doped cobalt zinc ferrite (Co0.5Zn0.5Cd0.2Fe1.8O4) prepared by simple, low-cost solid-state reaction method and characterized by XRD techniques. The X-ray analysis confirms the formation of ferrite particles with a cubic spinel structure. Crystallite size D, lattice constant a, micro strain ε, X-ray density ΔX, dislocation density ρ D , hopping lengths (LA and LB), bond lengths (A–O and B–O), ionic radii (rA and rB), texture coefficients [TC(hkl)], and mechanical properties are also reported.

Keywords

cadmium-doped cobalt zinc ferrite (Co0.5Zn0.5Cd0.2Fe1.8O4XRD texture coefficients dislocation density crystal strain 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Soohoo, R.F., Theory and Application of Ferrites, Englewood Cliffs, NJ: Prentice-Hall, 1960.Google Scholar
  2. 2.
    Goldman, A., Modern Ferrite Technology, Pittsburgh, PA: Springer-Verlag, 2006. doi 10.1007/978-0-387-29413-1Google Scholar
  3. 3.
    Snelling, E.C., Soft Ferrites: Properties and Applications, London: ILIFFE Books, 1969.Google Scholar
  4. 4.
    Collin, R.E., Foundations for Microwave Engineering, New York: IEEE Press, 2000.Google Scholar
  5. 5.
    Yattinahalli, S.S., Kapatkar, S.B., Ayachit, N.H., and Mathad, S.N., Synthesis and structural characterization of nanosized nickel ferrite, Int. J. Self-Propag. High-Temp. Synth., 2013, vol. 22, no. 3, pp. 147–150. doi 10.3103/S1061386213030114CrossRefGoogle Scholar
  6. 6.
    Yattinahalli, S.S., Mathad, S.N., and Kapatkar, S.B., Structural studies of zinc ferrite synthesized at low temperature, Int. Rev., 2014, vol. 1, no. 1, pp. 5–8.Google Scholar
  7. 7.
    Pathan, A.T., Mathad, S.N., and Shaikh, A.M., Infrared spectral studies of Co2+ substituted LiNi–Zn nanostructured ferrites, Int. J. Self-Propag. High-Temp. Synth., 2014, vol. 23, no. 2, pp. 112–117. doi 10.3103/S1061386214020083CrossRefGoogle Scholar
  8. 8.
    Rendale, M.K., Mathad, S.N., and Puri, V., Thick films of magnesium zinc ferrite with lithium substitution: Structural characteristics, Int. J. Self-Propag. High-Temp. Synth., 2015, vol. 24, no. 2, pp. 112–117. doi 10.3103/S1061386215020053CrossRefGoogle Scholar
  9. 9.
    Patil, M.R., Rendale, M.K., Mathad, S. N., and Pujar, R.B., Structural and IR study of Ni0.5‒xCdxZn0.5Fe2O4, Int. J. Self-Propag. High-Temp. Synth., 2015, vol. 24, no. 4, pp. 241–245. doi 10.3103/S1061386215040081CrossRefGoogle Scholar
  10. 10.
    Miller, J.C. and Barker, R.C., Switching properties of a single crystal specimen of nickel ferrite, J. Appl. Phys., 1963, vol. 34, no. 4, pp. 1129–1130. doi 10.1063/1.1729401CrossRefGoogle Scholar
  11. 11.
    Tancrell, R.H. and McMahon, R.E., Studies in partial switching of ferrite cores, J. Appl. Phys., 1960, vol. 31, no. 5, pp. 762–771. doi 10.1063/1.1735695CrossRefGoogle Scholar
  12. 12.
    Babbitt, R.W., Sands, G., and Dunlap, A.J., Grain size effects on switching properties of lithium ferrite, J. Appl. Phys., 1969, vol. 40, no. 3, pp. 1455–1457. doi 10.1063/1.1657717CrossRefGoogle Scholar
  13. 13.
    Vasambekar, P.N., Kolekar, C.B., and Vaingankar, A.S., Electrical switching in CdxCo1–xFe2–yCryO4 system, Mater. Res. Bull., 1999, vol. 34, no. 6, pp. 863–868. doi 10.1016/S0025-5408(99)00081-1CrossRefGoogle Scholar
  14. 14.
    Patange, S.M., Shirsath, S.E., Lohar, K.S., Jadhav, S.S., Mane, D.R., and Jadhav, K.M., Rietveld refinement and switching properties of Cr3+ substituted NiFe2O4 ferrites, J. Mater. Sci. Lett., 2010, vol. 64, no. 6, pp. 722–724. doi 10.1016/j.matlet.2009.12.049CrossRefGoogle Scholar
  15. 15.
    Mathew, D.S. and Juang, R.S., An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions, Chem. Eng. J., 2007, vol. 129, no. 1, pp. 51–56. doi 10.1016/j.cej.2006.11.001CrossRefGoogle Scholar
  16. 16.
    Virden, A., Wells, S., and O’Grady, K., Physical and magnetic properties of highly anisotropic cobalt ferrite particles, J. Magn. Magn. Mater., 2007, vol. 316, pp. e768–e771. doi 10.1016/j.jmmm.2007.03.100CrossRefGoogle Scholar
  17. 17.
    Niebedim, I.C., Ranvah, N., Williams, P.I., Melikhov, Y., Snyder, J.E., Moses, A.J., and Jiles, D.C., Effect of heat treatment on the magnetic and magnetoelastic properties of cobalt ferrite, J. Magn. Magn. Mater., 2010, vol. 322, pp. 1929–1933. doi 10.1016/j.jmmm.2010.01.009CrossRefGoogle Scholar
  18. 18.
    Kumar, S., Farea, A.M.M., Batoo, K.M., and Lee, C.G., Mössbauer studies of Co0.5CdxFe2.5–xO4 (0.0 ≤ x ≤ 0.5) ferrite, J. Phys. B, 2008, vol. 403, pp. 3604–3607. doi 10.1016/j.physb.2008.06.001CrossRefGoogle Scholar
  19. 19.
    Suwalka, O., Sharma, R.K., Sebastian, V., Lakshmi, N., and Venugopalan, K., A study of nanosized Ni substituted Co–Zn ferrite prepared by coprecipitation, J. Magn. Magn. Mater., 2007, vol. 313, pp. 198–203. doi 10.1016/j.jmmm.2006.12.026CrossRefGoogle Scholar
  20. 20.
    Somaiah, N., Jayaraman, T.V., Joy, P.A., and Das, D., Magnetic and magnetoelastic properties of Zn-doped cobalt-ferrites CoFe2 − xZnxO4 (x = 0, 0.1, 0.2, and 0.3), J. Magn. Magn. Mater., 2012, vol. 324, no. 14, pp. 2286–2291. doi 10.1016/j.jmmm.2012.02.116CrossRefGoogle Scholar
  21. 21.
    Singhal, S., Sharma, R., Namgyal, T., Jauhar, S., Bhukal, S., and Kaur, J., Structural, electrical and magnetic properties of Co0.5Zn0.5AlxFe2–xO4 (x = 0, 0.2, 0.4, 0.6, 0.8, and 1.0) prepared via sol–gel route, Ceram. Int., 2012, vol. 38, pp. 2773–2778. doi 10.1016/j.ceramint.2011.11.047CrossRefGoogle Scholar
  22. 22.
    Bhukal, S., Namgyal, T., Mor, S., Bansal, S., and Singhal, S., Structural, electrical, optical and magnetic properties of chromium substituted Co–Zn nanoferrites Co0.6Zn0.4CrxFe2–xO4 (0 ≤ x ≤ 1.0) prepared via sol–gel autocombustion method, J. Mol. Struct., 2012, vol. 1012, pp. 162–167. doi 10.1016/j.molstruc. 2011.12.019CrossRefGoogle Scholar
  23. 23.
    Mahalingam, T., Dhanasekaran, V., Chandramohan, R., and Rhee, J.K., Microstructural properties of electrochemically synthesized ZnSe thin films, J. Mater. Sci., 2012, vol. 47, pp. 1950–1957. doi 10.1007/s10853-011-5989-3CrossRefGoogle Scholar
  24. 24.
    Shedam, R.M., Gadkari, A.B., Mathad, S.N., and Shedam, M.R., Structural and mechanical properties of nanosized magnesium ferrite by oxalate co-precipitation method, Int. J. Self-Propag. High-Temp. Synth., 2017, vol. 26, no. 1, pp. 75–79. doi 10.3103/S1061386217010113CrossRefGoogle Scholar
  25. 25.
    Zak, A.K., Abrishami, E., Majid, W.H. A., Yousefi, R., and Hosseini, S.M., X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods, Ceram. Int., 2011, vol. 37, pp. 393–398. doi 10.1016/j.solidstatesciences.2010.11.024CrossRefGoogle Scholar
  26. 26.
    Tagliente, M.A. and Massaro, M., Strain-driven (002) preferred orientation of ZnO nanoparticles in ionimplanted silica, Nucl. Instrum. Methods Phys. Res., Sect. B, 2008, vol. 266, pp. 1055–1061. doi 10.1016/j.nimb.2008.02.036CrossRefGoogle Scholar
  27. 27.
    Prabhu, Y.T., Rao, K.V., Kumar, V.S.S., and Kumari, B.S., X-Ray Analysis by Williamson-Hall and Size-Strain Plot Methods of ZnO Nanoparticles with fuel variation, World J. Nano Sci. Eng., 2014, vol. 4, pp. 21–28. doi 10.4236/wjnse.2014.41004CrossRefGoogle Scholar
  28. 28.
    Babar, A.R., Shinde, S.S., Moholkar, A.V., Bhosale, J., Kim, H., and Rajpure, K.Y., Physical properties of sprayed antimony doped tin oxide thin films: The role of thickness, J. Semicond., 2011, vol. 32, no. 5, 053001–053008. doi 10.1088/1674-4926/32/5/053001CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Department of PhysicsJain College of EngineeringBelagaviIndia
  2. 2.K.L.E. Institute of TechnologyHubballiIndia

Personalised recommendations