Skip to main content
Log in

Pd/Fiber glass and Pd/5% γ-Al2O3/Fiber glass catalysts by surface self-propagating thermal synthesis

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

The technique of Surface Self-propagating Thermal Synthesis (SSTS) was used to prepare Pd/γ-Al2O3/fiber glass (FG) catalysts for selective liquid-phase hydrogenation of acetylene in the presence of CO. The results of XRD SR analysis (in synchrotron radiation) in combination with the technique of arrested combustion shed new light on the dynamic of phase transformations in the systems under study and variation in the size of diffraction-active crystallites. The catalytic performance of synthesized catalysts was found to be close to that of similar conventionally prepared catalysts. The EXAFS and TEM data afforded to estimate the variation in relative amounts of Pd0 and PdO in synthesized catalysts. In the course of selective hydrogenation, PdO rapidly (<15 min) reduced to Pd0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Merzhanov, A.G., Protsessy goreniya i sintez materialov (Combustion Processes and Materials Synthesis), Chernogolovka: Izd. ISMAN, 1998.

    Google Scholar 

  2. Xanthopoulou, G. and Vekinis, G., An Overview of Some Environmental Applications of Self-Propagating High-Temperature Synthesis, Adv. Environm. Res., 2001, no. 5, pp. 117–128.

  3. Merzhanov, A.G. and Borovinskaya, I.P., Historical Retrospective of SHS: An Autoreview, Int. J. SHS, 2008, vol. 17, no. 4, pp. 242–265.

    CAS  Google Scholar 

  4. Varma, A., Rogachev, A.S., Mukasyan, A.S., and Hwang, S., Combustion Synthesis of Advanced Materials: Principles and Applications, Adv. Chem. Eng., 1998, vol. 24, pp. 79–226.

    Article  CAS  Google Scholar 

  5. Aruna, S.T. and Mukasyan, A.S., Combustion Synthesis and Nanomaterials: Current Opinion, Solid State Mater. Sci., 2008, vol. 12, no 1, pp. 44–50.

    Article  CAS  Google Scholar 

  6. Specchia, S., Galletti, C., and Specchia, V., Solution Combustion Synthesis as Intriguing Technique to Quickly Produce Performing Catalysts for Specific Applications, in Studies in Surface Science and Catalysis, Amsterdam: Elsevier, 2010, vol. 175, no. 1, pp. 59–67.

    Google Scholar 

  7. Schuyten, S., Dinka, P., Mukasyan, A.S., and Wolf, E., A Novel Combustion Synthesis Preparation of CuO/ZnO/ZrO2/Pd for Oxidative Hydrogen Production from Methanol, Catal. Lett., 2008, vol. 121, nos. 3–4, pp. 189–198.

    Article  CAS  Google Scholar 

  8. Lennon, E.M., Tanzy, M.C., Volpert, V.A., Mukasyan, A.S., and Bayliss, A., Combustion of Reactive Solutions Impregnated into a Cellulose Carrier: Modeling of Two Combustion Fronts, Chem. Eng. J., 2011, vol. 174, no. 1, pp. 333–340.

    Article  CAS  Google Scholar 

  9. Kumar, A., Mukasyan, A.S., and Wolf, E.E., Combustion Synthesis of Ni, Fe, and Cu Multicomponent Catalysts for Hydrogen Production from Ethanol Reforming, Appl. Catal., Ser. A, 2011, vol. 401, nos. 1–2, pp. 20–28.

    Article  CAS  Google Scholar 

  10. Kumar, A., Mukasyan, A.S., and Wolf, E.E., Impregnated Layer Combustion Synthesis Method for Preparation of Multicomponent Catalysts for the Production of Hydrogen from Oxidative Reforming of Methanol, Appl. Catal., Ser. A, 2010, vol. 372, no. 2, pp. 175–183.

    Article  CAS  Google Scholar 

  11. Mukasyan, A.S. and Dinka, P., Novel Approaches to Solution-Combustion Synthesis of Nanomaterials, Int. J. SHS, 2007, vol. 16, no. 1, pp. 23–35.

    CAS  Google Scholar 

  12. Tsyrul’nikov, P.G., Zav’yalova, U.F., Shitova, N.B., Ryzhova, N.D., and Tret’yakov, V.F., Russ. Patent 2 284 219, 2005.

  13. Zav’yalova, U.F., Surface Self-Propagating Thermal Synthesis of Catalysts for Neutralization of Exhaust Gases, Cand. Sci. (Chem.) Dissertation, Ìoscow: Topchiev Institute of Petrochemical Synthesis, 2005.

    Google Scholar 

  14. Kotolevich, Y.S., Tsyrul’nikov, P.G., Sharafutdinov, M.R., Mironenko, O.O., Nizovskiy, A.I., and Goncharov, V.B., Pd and Ag Catalysts by Surface Self-Propagating Thermal Synthesis, Izv. Vyssh. Uchebn. Zaved., Fiz., 2011, vol. 54, nos. 1–2, pp. 370–376.

    Google Scholar 

  15. Afonasenko, T.N., Shlyapin, D.A., Leont’eva, N.N., Gulyaeva, T.I. Buyal’skaya, K.S., Trenikhin, M.V., and Tsyrul’nikov, P.G., Selective Oxidation of Carbon Monoxide in Hydrogen-Containing Gas over CuO-CeO2/Al2O3 Catalysts Prepared by Surface Self-Propagating Thermal Synthesis, Kinet. Catal., 2011, vol. 52, no. 6, pp. 843–850 [Kinet. Katal. (Engl. Transl.), 2011, vol. 52, no. 6, pp. 864–872].

    Article  CAS  Google Scholar 

  16. Mironenko, O.O., Struikhina, N.O., Iost, K.N., Smirnova, N.S., Kochubey, D.I., Kibis, L.S., Gulyaev, R.V., Boronin, A.I., Stonkus, O.I., Zaikovskii, V.I., and Tsyrul’nikov, P.G., Study of Pd/γ-Al2O3 Catalysts of Liquid-Phase Selective Hydrogenation of Acetylene to Ethylene Prepared by Surface Selfpropagating Thermosynthesis (SSTS), in EuropaCat X Congress, Glasgow, 2011.

  17. http://www.synfuels.com.

  18. Shitova, N.B., Shlyapin, D.A., Afonasenko, T.N., Kudrya, E.N., Tsyrul’nikov, P.G., and Likholobov, V.A., Liquid-Phase Hydrogenation of Acetylene in the Presence of CO, Kinet. Katal., 2011, vol. 52, no. 2, pp. 1–7.

    Article  Google Scholar 

  19. Zhang, Q., Li, J., Liu, X., and Zhu, Q., Synergetic Effect of Pd and Ag Dispersed on Al2O3 in the Selective Hydrogenation of Acetylene, Appl. Catal., Ser. A, 2000, vol. 197, no. 2, pp. 221–228.

    Article  CAS  Google Scholar 

  20. Borodzinski, À. and Bond, G.C., Selective Hydrogenation of Ethyne in Ethene-Rich Streams over Palladium Catalysts, Part 2: Steady-State Kinetics and Effects of Palladium Particle Size, Carbon Monoxide, and Promoters, Catal. Rev., 2008, vol. 50, no. 3, pp. 379–469.

    Article  CAS  Google Scholar 

  21. Borodzinski, À. and Bond, G.C., Selective Hydrogenation of Ethyne in Ethene-Rich Streams on Palladium Catalysts, Part 1: Effect of Changes to the Catalyst during Reaction, Catal. Rev., 2006, vol. 48, no. 2, pp. 91–144.

    Article  CAS  Google Scholar 

  22. Balzhinimaev, B.S., Barelko, V.V., Suknev, A.P., Paukshtis, E.A., Simonova, L.G., Goncharov, V.B., Kirillov, V.L., and Toktarev A.V., Catalysts Based on Fiberglass Supports, V: Absorption and Catalytic Properties of Palladium Catalysts Based on a Leached Silica-Fiberglass Support in the Selective Hydrogenation of an Ethylene-Acetylene Mixture, Kinet. Catal., 2002, vol. 43, no. 4, pp. 542–549 [Kinet. Katal. (Engl. Transl.), 2002, vol. 43, no. 4, pp. 586–594].

    Article  CAS  Google Scholar 

  23. Balzhinimaev, B.S., Paukshtis, A.P., Lapina, O.B. Suknev, A.P., Kirillov, V.L., Mikenin, P.E., and Zagoruiko, A.N., Glass Fiber Materials as a New Generation of Structured Catalysts, in Studies in Surface Science and Catalysis, Amsterdam: Elsevier, 2010, vol. 175, pp. 43–50.

    Google Scholar 

  24. Balzhinimaev, B.S., Paukshtis, E.A., Vanag, S.V., Suknev, A.P., and Zagoruiko, A.N., Glass-Fiber Catalysts: Novel Oxidation Catalysts and Catalytic Technologies for Environmental Protection, Catal. Today, 2010, vol. 151, no. 1–2, pp. 195–199.

    Article  CAS  Google Scholar 

  25. Nikolaev, S.A, Zanaveskin, L.N., Smirnov, V.V., Aver’yanov, V.A., and Zanaveskin, K.L., Catalytic Hydrogenation of Alkene and Alkadiene Impurities in Olefins: Practical and Academic Aspects, Usp. Khim., 2009, vol. 78, no. 3, pp. 248–265.

    Google Scholar 

  26. Mashkovskii, I.S., Bimetal Pd-Containing Catalysts for Selective Hydrogenation of Acetylene Based on Heterometallic Acetate Complexes, Cand. Sci. (Chem.) Dissertation, Ìoscow: Zelinskii Institute of Organic Chemistry, 2009.

    Google Scholar 

  27. http://www.elib/icsd.

  28. Kotolevich, Y.S. and Tsyrul’nikov, P.G., Russ. Patent Appl. 2011 105 209, 2011.

  29. Kochergina, L.A., Volkov, A.V., Krutov, D.V., and Krutova O.N., Standard Enthalpies of Formation for Citric and Tartaric Acids and Their Dissociation Products in Aqueous Solutions, Russ. J. Phys. Chem., 2006, vol. 80, no. 6, pp. 899–903 [Zh. Fiz. Khim. (Engl. Transl.), 2006, vol. 80, no. 6, pp. 1029–1033].

    Article  CAS  Google Scholar 

  30. Barros, N., Feijóo, S., Simoni, A., Critter S.A.M., and Airoldi, C., Interpretation of the Metabolic Enthalpy Change, ΔH met, Calculated for Microbial Growth Reactions in Soils, J. Therm. Anal. Calorim., 2001, vol. 63, no. 2, pp. 577–588.

    Article  CAS  Google Scholar 

  31. Kim, W.J., Shin, E.W., and Kang, J.H., Performance of Si-Modied Pd Catalyst in Acetylene Hydrogenation: Catalyst Deactivation Behavior, Appl. Catal., Ser. A, 2003, vol. 251, no. 2, pp. 305–313.

    Article  CAS  Google Scholar 

  32. Baylet, A., Marecot, P., Duprez, D., Castellazzi, P., Groppi, G., and Forzatti, P., In Situ Raman and In Situ XRD Analysis of PdO Reduction and Pd Oxidation in Supported on γ-Al2O3 Catalyst under Different Atmospheres, Phys. Chem. Chem. Phys., 2011, no. 13, pp. 4607–4613.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. O. Mironenko.

About this article

Cite this article

Mironenko, O.O., Shitova, N.B., Kotolevich, Y.S. et al. Pd/Fiber glass and Pd/5% γ-Al2O3/Fiber glass catalysts by surface self-propagating thermal synthesis. Int. J Self-Propag. High-Temp. Synth. 21, 139–145 (2012). https://doi.org/10.3103/S1061386212020082

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386212020082

Keywords

Navigation