Skip to main content
Log in

Dependence of Critical Parameters of 2D Ising Model on Lattice Size

  • Published:
Optical Memory and Neural Networks Aims and scope Submit manuscript

Abstract

For the 2D Ising model, we analyzed dependences of thermodynamic characteristics on number of spins by means of computer simulations. We compared experimental data obtained using the Fisher-Kasteleyn algorithm on a square lattice with N = l × l spins and the asymptotic Onsager solution (N → ∞). We derived empirical expressions for critical parameters as functions of N and generalized the Onsager solution on the case of a finite-size lattice. Our analytical expressions for the free energy and its derivatives (the internal energy, the energy dispersion and the heat capacity) describe accurately the results of computer simulations. We showed that when N increased the heat capacity in the critical point increased as lnN. We specified restrictions on the accuracy of the critical temperature due to finite size of our system. Also in the finite-dimensional case, we obtained expressions describing temperature dependences of the magnetization and the correlation length. They are in a good qualitative agreement with the results of computer simulations by means of the dynamic Metropolis Monte Carlo method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baxter, R.J., Exactly Solved Models in Statistical Mechanics, London: Academic, 1982.

    MATH  Google Scholar 

  2. Stanley, H., Introduction to Phase Transitions and Critical Phenomena, Oxford: Clarendon, 1971.

    Google Scholar 

  3. Onsager, L., Crystal statistics, I. A two-dimensional model with an order–disorder transition, Phys. Rev., 1944, vol. 65, no. 3–4, pp. 117–149.

    Google Scholar 

  4. Huang, K., Statistical Mechanics, New York: Wiley, 1987.

    MATH  Google Scholar 

  5. Dixon, J.M., Tuszynski, J.A., and Clarkson, P., From Nonlinearity to Coherence: Universal Features of Nonlinear Behavior in Many-Body Physics, Oxford: Clarendon Press, 1997.

    Google Scholar 

  6. Kramers, H.A. and Wannier, G.H., Statistics of the two-dimensional ferromagnet, Part I, Phys. Rev., 1941, vol. 60, no. 3, pp. 252–262.

    MathSciNet  MATH  Google Scholar 

  7. Kubo, R., An analytic method in statistical mechanics, Busserion Kenkyu (Japan), 1943, vol. 1, pp. 1–13.

    Google Scholar 

  8. Bonner, J.C. and Fisher, M.E., Linear magnetic chains with anisotropic coupling, Phys. Rev. A, 1964, vol. 135, no. 3, pp. A640–A658.

    Article  Google Scholar 

  9. Baker, G.A., Jr., Rushbrooke, G.S., and Gilbert, H.E., High-temperature series expansions for the spin 1/2 Heisenberg model by the method of irreducible representations of the symmetric group, Phys. Rev. A, 1964, vol. 135, no. 5, pp. 1272–1277.

    Article  MathSciNet  Google Scholar 

  10. Kondo, J. and Yamaji, K., Green’s-function formalism of the one-dimensional Heisenberg spin system, Adv. Theor. Phys., 1972, vol. 47, no. 3, pp. 807–818.

    Article  Google Scholar 

  11. Cullen, J.J. and Landau, D.P., Monte Carlo studies of one-dimensional quantum Heisenberg and XY models, Phys. Rev. B, 1983, vol. 27, no. 1, pp. 297–313.

    Article  Google Scholar 

  12. Lyklema, J.W., Monte Carlo study of the one-dimensional quantum Heisenberg ferromagnet near T = 0, Phys. Rev. B, 1983, vol. 27, no. 5, pp. 3108–3110.

    Article  Google Scholar 

  13. Marcu, M., Muller, J., and Schmatzer, F.-K., Quantum Monte Carlo simulation of the one-dimensional spin-S xxz model, II. High precision calculations for S = 1/2, J. Phys. A: Math. Gen., 1985, vol. 18, no. 16, pp. 3189–3203.

    Article  Google Scholar 

  14. Schlottmann, P., Low-temperature behavior of the S = (1/2) ferromagnetic Heisenberg chain, Phys. Rev. B, 1986, vol. 33, no. 8, pp. 4880–4886.

    Article  Google Scholar 

  15. Kac, M. and Ward, J., A combinatorial solution of the two-dimensional Ising model, Phys. Rev., 1952, vol. 88, no. 7, pp. 1332–1337.

    Article  MATH  Google Scholar 

  16. Takahashi, M. and Yamada, M., Critical behavior of spin-1/2 one-dimensional Heisenberg ferromagnet at low temperatures, J. Phys. Soc. Jpn., 1986, vol. 55, no. 7, pp. 2024–2036.

    Article  Google Scholar 

  17. Majumdar, C.K. and Ramarao, I., Critical field and low-temperature critical indices of the ferromagnetic Ising model, Phys. Rev. B, 1980, vol. 22, no. 8, pp. 3288–3293.

    Article  Google Scholar 

  18. Kryzhanovsky, B.V. and Litinskii, L.B., Generalized Bragg-Williams equation for systems with arbitrary longrange interaction, Dokl. Math., 2014, vol. 90, no. 3, pp. 784–787.

    Article  MathSciNet  MATH  Google Scholar 

  19. Kryzhanovsky, B. and Litinskii, L., Applicability of n-vicinity method for calculation of free energy of Ising model, J. Phys. A: Math. Gen., 2017, vol. 468, pp. 493–507.

    MathSciNet  Google Scholar 

  20. Amit, D., Gutfreund, H., and Sompolinsky, H., Statistical mechanics of neural networks near saturation, Adv. Phys., 1987, vol. 173, pp. 30–67.

    Google Scholar 

  21. van Hemmen, J.L. and Kuhn, R., Collective phenomena in neural networks, in Models of Neural Networks, Domany, E., van Hemmen, J.L., and Shulten, K., Eds., Berlin: Springer-Verlag, 1992, pp. 1–105.

  22. Martin, O.C., Monasson, R., and Zecchina, R., Statistical mechanics methods and phase transitions in optimization problems, J. Comput. Theor. Nanosci., 2001, vol. 265, nos. 1–2, pp. 3–67.

    Article  MathSciNet  MATH  Google Scholar 

  23. Karandashev, I., Kryzhanovsky, B., and Litinskii, L., Weighted patterns as a tool to improve the Hopfield model, Phys. Rev. E, 2012, vol. 85, p. 041925.

    Article  Google Scholar 

  24. Hinton, G.E., Osindero, S., and The, Y., A fast learning algorithm for deep belief nets, Computation, 2006, vol. 18, pp. 1527–1554.

    MathSciNet  MATH  Google Scholar 

  25. Wainwright, M.J., Jaakkola, T., and Willsky, A.S., A new class of upper bounds on the log partition function, IEEE Trans. Inf. Theory, 2005, vol. 51, no. 8, pp. 2313–2335.

    Article  MathSciNet  MATH  Google Scholar 

  26. Yedidia, J.S., Freeman, W.T., and Weiss, Y. Constructing free-energy approximations and generalized belief propagation algorithms, IEEE Trans. Inf. Theory, 2005, vol. 51, no. 8, pp. 2282–2312.

    Article  MathSciNet  MATH  Google Scholar 

  27. Blote, H.W.J., Shchur, L.N., and Talapov, A.L., The cluster processor: new results, Int. J. Mod. Phys. C, 1999, vol. 10, p. 1137.

    Article  Google Scholar 

  28. Häggkvist, R., Rosengren, A., Lundow, P.H., Markström, K., Andren, D., and Kundrotas, P., On the Ising model for the simple cubic lattice, Adv. Phys., 2007, vol. 56, no. 5, pp. 653–755.

    Article  MATH  Google Scholar 

  29. Lundow, P.H. and Markstrom, K., The critical behavior of the Ising model on the 4-dimensional lattice, Phys. Rev. E, 2004, vol. 80, p. 031104.

    Article  Google Scholar 

  30. Lundow, P.H. and Markstrom, K., The discontinuity of the specific heat for the 5D Ising model, Nucl. Phys. B, 2015, vol. 895, pp. 305–318.

    Article  MathSciNet  MATH  Google Scholar 

  31. Dixon, J.M., Tuszynski, J.A., and Carpenter, E.J., Analytical expressions for energies, degeneracies and critical temperatures of the 2D square and 3D cubic Ising models, Int. J. Mod. Phys. A, 2005, vol. 349, pp. 487–510.

    MathSciNet  Google Scholar 

  32. Kasteleyn, P., Dimer statistics and phase transitions, J. Math. Phys., 1963, vol. 4, no.2.

    Google Scholar 

  33. Fisher, M., On the dimer solution of planar Ising models, J. Math. Phys., 1966, vol. 7, no.11.

    Google Scholar 

  34. Karandashev, Ya.M. and Malsagov, M.Yu., Polynomial algorithm for exact calculation of partition function for binary spin model on planar graphs, Opt. Mem. Neural Networks, 2017, vol. 26, no. 2. https://arxiv.org/abs/1611.00922.

    Google Scholar 

  35. Schraudolph, N. and Kamenetsky, D., Efficient exact inference in planar Ising models, Proc. 21st Int. Conf. on Neural Information Processing Systems, Vancouver, British Columbia, Canada, December 8–10, 2008, Red Hook, NY: Curran Associates, 2008., 2008. https://arxiv.org/abs/0810.4401.

    Google Scholar 

  36. Yang, C.N., The spontaneous magnetization of a two-dimensional Ising model, Phys. Rev., 1952, vol. 65, pp. 808–816.

    Article  MathSciNet  MATH  Google Scholar 

  37. Kryzhanovsky, B.V., The spectral density of a spin system calculated for solvable models. http://arxiv.org/abs/1704.01351.

  38. Dixon, J.M., Tuszynski, J.A., and Carpenter, E.J., Analytical expressions for energies, degeneracies and critical temperatures of the 2D square and 3D cubic Ising models, J. Phys. A: Math. Gen., 2005, vol. 349, pp. 487–510.

    MathSciNet  Google Scholar 

  39. Karandashev, Ya.M., Kryzhanovsky, B.V., and Malsagov, M.Yu., Analytical expressions for a finite-size 2D Ising model, Opt. Mem. Neural Networks, 2017, vol. 26, no. 3, pp. 165–171.

    Article  Google Scholar 

  40. Häggkvist, R., Rosengren, A., Andrén, D., Kundrotas, P., Lundow, P.H., and Markström, K., Computation of the Ising partition function for two-dimensional square grids, Phys. Rev. E, 2004, vol. 69, p. 046104.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. V. Kryzhanovsky.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kryzhanovsky, B.V., Malsagov, M.Y. & Karandashev, I.M. Dependence of Critical Parameters of 2D Ising Model on Lattice Size. Opt. Mem. Neural Networks 27, 10–22 (2018). https://doi.org/10.3103/S1060992X18010046

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1060992X18010046

Keywords

Navigation