Advertisement

Optical Memory and Neural Networks

, Volume 27, Issue 1, pp 1–9 | Cite as

Fractal Cylindrical Fracxicon

  • S. N. Khonina
  • S. G. Volotovskiy
Article
  • 16 Downloads

Abstract

The paper presents the results of a numerical study of a new optical element–the fractal fracxicon. The fracxicon is an element whose phase function is a fractional power of spatial coordinates. With the power of phase function being less than two (sub-linearly chirped), a fracxicon corresponds to a fractional axicon and provides self-focusing features similar to mirror/specular Airy beams. When the power is greater than two (super-linearly chirped), a fracxicon corresponds to a generalized lens and provides self-focusing, which is faster and sharper than a lens provides. A fractal fracxicon generates beams that exhibit such properties as self-similarity and self-focusing. This type of optical elements can be used as versatile tools in the field of optical micromanipulation and data encoding.

Keywords

fractals fractional axicon generalized lens fracxicon chirping self-focusing fractional Fourier transform 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mandelbrot, B.B., The Fractal Geometry of Nature, New York: Freeman, 1983.Google Scholar
  2. 2.
    Barnsley, M., Fractals Everywhere, Boston: Academic, 1988.zbMATHGoogle Scholar
  3. 3.
    Segev, M., Soljacic, M., and Dudley, J.M., Fractal optics and beyond, Nat. Photonics, 2012, vol. 6, no. 4, pp. 209–210.CrossRefGoogle Scholar
  4. 4.
    Addison, P.S., Fractals and Chaos: An Illustrated Course, Bristol: Inst. Phys., 1997.CrossRefzbMATHGoogle Scholar
  5. 5.
    Feder, J., Fractals, New York: Springer-Verlag, 2013.zbMATHGoogle Scholar
  6. 6.
    Bieberich, E., Recurrent fractal neural networks: A strategy for the exchange of local and global information processing in the brain, BioSystems, 2002, vol. 66, pp. 145–164CrossRefGoogle Scholar
  7. 7.
    Dorogov, A.Yu., Fractal learning of fast orthogonal neural networks, Opt. Mem. Neural Networks, 2012, vol. 21, no. 2, pp. 105–118.CrossRefGoogle Scholar
  8. 8.
    Phothisonothai, M. and Watanabe, K., Optimal fractal feature and neural network: EEG based BCI applications, in Brain-Computer Interface Systems—Recent Progress and Future Prospects, Rijeka: InTech, 2013, chap. 5, pp. 91–113.Google Scholar
  9. 9.
    Berry, M.V., Diffractals, J. Phys. A: Math. Gen., 1979, vol. 12, pp. 781–797.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Berry, M.V. and Klein, S., Integer, fractional and fractal Talbot effects, J. Mod. Opt., 1996, vol. 43, no. 10, pp. 2139–2164.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Karman, G.P., McDonald, G.S., New, G.H.C., and Woerdman, J.P., Laser optics: fractal modes in unstable resonators, Nature, 1999, vol. 402, pp. 138–140.CrossRefGoogle Scholar
  12. 12.
    Gabitov, I.R. and Manakov, S.V., Propagation of ultrashort optical pulses in degenerate laser amplifiers, Phys. Rev. Lett., 1983, vol. 50, no. 7, pp. 495–498.CrossRefGoogle Scholar
  13. 13.
    Zincik, A.A., Muzychenko, Ya.B., and Stafeev, S.K., Principles of amplitude and amplitude-phase spatial filtration, Instrumentation, 2007, vol. 50, no. 7, pp. 46–52.Google Scholar
  14. 14.
    Peitgen, H.O., Jurgens, H., and Saupe, D., Chaos and Fractals: New Frontiers of Science, New York: Springer-Verlag, 2004, 2nd ed.CrossRefzbMATHGoogle Scholar
  15. 15.
    Forrest, S. and Witten, T.A., Long-range correlations in smoke-particle aggregates, J. Phys. A, 1979, vol. 12, no. 5, p. L109.CrossRefGoogle Scholar
  16. 16.
    Berry, M.V. and Percival, I.C., Optics of fractal clusters such as a smoke, J. Mod. Opt., 1986, vol. 33, no. 5, pp. 577–591.Google Scholar
  17. 17.
    Oster, G., Wasserman, M., and Zwerling, C., Theoretical interpretation of Moiré patterns, J. Opt. Soc. Am., 1964, vol. 54, no. 2, pp. 169–175.CrossRefGoogle Scholar
  18. 18.
    Khonina, S.N. and Golub, I., Creating order with the help of randomness: generating transversely random, longitudinally invariant vector optical fields, Opt. Lett., 2015, vol. 40, no. 17, pp. 4070–4073.CrossRefGoogle Scholar
  19. 19.
    Soifer, V.A., Korotkova, O., Khonina, S.N., and Shchepakina, E.A., Vortex beams in turbulent media: Review, Computer Optics, 2016, vol. 40, no. 5, pp. 605–624.Google Scholar
  20. 20.
    Porfirev, A.P., Kirilenko, M.S., Khonina, S.N., Skidanov, R.V., and Soifer, V.A., Study of propagation of vortex beams in aerosol optical medium, Appl. Opt., 2017, vol. 56, no. 11, pp. E8–E15.CrossRefGoogle Scholar
  21. 21.
    Sakurada, Y., Uozumi, J., and Asakura, T., Fresnel diffraction by 1-D regular fractals, Pure Appl. Opt., 1992, vol. 1, pp. 29–35.CrossRefGoogle Scholar
  22. 22.
    Jaggard, A.D. and Jaggard, D.L., Cantor ring diffractals, Opt. Commun., 1998, vol. 158, no. 1, pp. 141–148.CrossRefGoogle Scholar
  23. 23.
    Szwaykowski, P., Self-imaging in polar coordinates, J. Opt. Soc. Am. A, 1988, vol. 5, no. 2, pp. 185–191.CrossRefGoogle Scholar
  24. 24.
    Hou, B., Xu, G., Wen, W., and Wong, G.K.L., Diffraction by an optical fractal grating, Appl. Phys. Lett., 2004, vol. 85, no. 25, pp. 6125–6127.CrossRefGoogle Scholar
  25. 25.
    Mendez, D.C. and Lehman, M., Talbot effect with Cantor transmittances, Optik, 2004, vol. 115, no. 10, pp. 439–442.CrossRefGoogle Scholar
  26. 26.
    Khonina, S.N., Kotlyar, V.V., and Soifer, V.A., Self-reproduction of multimode Hermite–Gaussian beams, Tech. Phys. Lett., 1999, vol. 25, no. 6, pp. 489–491.CrossRefGoogle Scholar
  27. 27.
    Khonina, S.N. and Volotovsky, S.G., Self-reproduction of multimode laser fields in weakly guiding steppedindex fibers, Opt. Mem. Neural Networks, 2007, vol. 16, no. 3, pp. 167–177.CrossRefGoogle Scholar
  28. 28.
    Saavedra, G., Furlan, W.D., and Monsoriu, J.A., Fractal zone plates, Opt. Lett., 2003, vol. 28, no. 12, pp. 971–973.CrossRefGoogle Scholar
  29. 29.
    Mihailescu, M., Preda, A.M., Sobetkii, A., and Petcu, A.C., Fractal-like diffractive arrangement with multiple focal points, Opto-Electron. Rev., 2009, vol. 17, no. 4, pp. 330–337.CrossRefGoogle Scholar
  30. 30.
    Kotlyar, V.V., Khonina, S.N., and Soifer, V.A., Diffraction computation of focusator into longitudinal segment and multifocal lens, Proc. SPIE, 1993, vol. 1780, pp. 263–272.Google Scholar
  31. 31.
    Soifer, V.A., Doskolovich, L.L., and Kazanskiy, N.L., Multifocal diffractive elements, Opt. Sci. Eng., 1994, vol. 33, no. 11, pp. 3610–3615.CrossRefGoogle Scholar
  32. 32.
    Khonina, S.N., Kotlyar, V.V., and Soifer, V.A., Calculation of the focusators into a longitudinal linesegment and study of a focal area, J. Mod. Opt., 1993, vol. 40, no. 5, pp. 761–769.CrossRefGoogle Scholar
  33. 33.
    Khonina, S.N. and Ustinov, A.V., Lenses to form a longitudinal distribution matched with special functions, Opt. Commun., 2014, vol. 341, pp. 114–121.CrossRefGoogle Scholar
  34. 34.
    Wang, Y.X., Yun, W.B., and Jacobsen, C., Achromatic Fresnel optics for wideband extreme-ultraviolet and Xray imaging, Nature, 2003, vol. 424, no. 6944, pp. 50–53.CrossRefGoogle Scholar
  35. 35.
    Furlan, W.D., Saavedra, G., and Monsoriu, J.A., White-light imaging with fractal zone plates, Opt. Lett., 2007, vol. 32, no. 15, pp. 2109–2111.CrossRefGoogle Scholar
  36. 36.
    Andersen, G. and Tullson, D., Broadband antihole photon sieve telescope, Phys. Rev. A, 2007, vol. 46, no. 18, pp. 3706–3708.Google Scholar
  37. 37.
    Allain, C. and Cloitre, M., Spatial spectrum of a general family of self-similar arrays, Phys. Rev., 1987, vol. 36, no. 12, pp. 5751–5757.MathSciNetCrossRefGoogle Scholar
  38. 38.
    Uozumi, J., Kimura, H., and Asakura, T., Fraunhofer diffraction by Koch fractals, J. Mod. Opt., 1990, vol. 37, no. 6, pp. 1011–1031.MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Zunino, L. and Garavaglia, M., Fraunhofer diffraction by cantor fractals with variable lacunarity, J. Mod. Opt., 2003, vol. 50, no. 5, pp. 717–727.CrossRefGoogle Scholar
  40. 40.
    Horvath, P., Smid, P., Vaskova, I., and Hrabovsky, M., Koch fractals in physical optics and their Fraunhofer diffraction patterns, Optik, 2010, vol. 121, no. 2, pp. 206–213.CrossRefGoogle Scholar
  41. 41.
    Khonina, S.N., Ustinov, A.V., Skidanov, R.V., and Porfirev, A.P., Local foci of a parabolic binary diffraction lens, Appl. Opt., 2015, vol. 54, no. 18, pp. 5680–5685.CrossRefGoogle Scholar
  42. 42.
    Khonina, S.N. and Volotovsky, S.G., Fracxicon—diffractive optical element with conical focal domain, Computer Optics, 2009, vol. 33, no. 4, pp. 401–411.Google Scholar
  43. 43.
    Khonina, S.N., Phase apodization of imaging system to increase the focal depth in coherent and incoherent cases, Computer Optics, 2012, vol. 36, no. 3, pp. 357–364.Google Scholar
  44. 44.
    Efremidis, N.K., Christodoulides, D.N., Abruptly autofocusing waves, Opt. Lett., 2010, vol. 35, no. 23, pp. 4045–4047.CrossRefGoogle Scholar
  45. 45.
    Papazoglou, D.G., Efremidis, N.K., Christodoulides, D.N., and Tzortzakis, S., Observation of abruptly autofocusing waves, Opt. Lett., 2011, vol. 36, pp. 1842–1844.CrossRefGoogle Scholar
  46. 46.
    Chremmos, I., Efremidis, N.K., and Christodoulides, D.N., Pre-engineered abruptly autofocusing beams, Opt. Lett., 2011, vol. 36, no. 10, pp. 1890–1892.CrossRefGoogle Scholar
  47. 47.
    Jiang, Y., Huang, K., and Lu, X., Radiation force of abruptly autofocusing Airy beams on a Rayleigh particle, Opt. Express, 2013, vol. 21, no. 20, pp. 24413–24421.CrossRefGoogle Scholar
  48. 48.
    Liu, S., Wang, M., Li, P., Zhang, P., and Zhao, J., Abrupt polarization transition of vector autofocusing Airy beams, Opt. Lett., 2013, vol. 38, no. 14, pp. 2416–2418.CrossRefGoogle Scholar
  49. 49.
    Khonina, S.N., Ustinov, A.V., and Volotovsky, S.G., Fractional axicon as a new type of diffractive optical element with conical focal region, Precis. Instrum. Mechanol., 2013, vol. 2, no. 4, pp. 132–143.Google Scholar
  50. 50.
    Ustinov, A.V. and Khonina, S.N., Fracxicon as hybrid element between the parabolic lens and the linear axicon, Computer Optics, 2014, vol. 38, no. 3, pp. 402–411.CrossRefGoogle Scholar
  51. 51.
    Khonina, S.N. and Ustinov, A.V., Fractional Airy beams, J. Opt. Soc. Am. A, 2017, vol. 34, no. 11, pp. 1991–1999.CrossRefGoogle Scholar
  52. 52.
    Khonina, S.N., Specular and vortical Airy beams, Opt. Commun., 2011, vol. 284, pp. 4263–4271.CrossRefGoogle Scholar
  53. 53.
    Ustinov, A.V. and Khonina, S.N., Generalized lens: Calculation of distribution on the optical axis, Computer Optics, 2013, vol. 37, no. 3, pp. 307–315.CrossRefGoogle Scholar
  54. 54.
    Khonina, S.N. and Ustinov, A.V., Diffraction of a Gaussian beam on the generalized lens, Computer Optics, 2013, vol. 37, no. 4, pp. 443–450.CrossRefGoogle Scholar
  55. 55.
    Mendlovic, D. and Ozaktas, H.M., Fractional Fourier transformations and their optical implementation. I, J. Opt. Soc. Am. A, 1993, vol. 10, pp. 1875–1881.CrossRefGoogle Scholar
  56. 56.
    Alieva, T., Bastiaans, M.J., and Calvo, M.L., Fractional transforms in optical information processing, EURASIP J. Appl. Signal Process., 2005, vol. 10, pp. 1–22.MathSciNetzbMATHGoogle Scholar
  57. 57.
    Ozaktas, H.M. and Mendlovic, D., Fourier transforms of fractional order and their optical interpretation, Opt. Commun., 1993, vol. 101, pp. 163–169.CrossRefGoogle Scholar
  58. 58.
    Almazov, A.A. and Khonina, S.N., Periodic self-reproduction of multi-mode laser beams in graded-index optical fibers, Opt. Mem. Neural Networks, 2004, vol. 13, no. 1, pp. 63–70.Google Scholar
  59. 59.
    Khonina, S.N., Striletz, A.S., Kovalev, A.A., and Kotlyar, V.V., Propagation of laser vortex beams in a parabolic optical fiber, Proc. SPIE, 2010, vol. 7523, pp. 75230B–1–12.CrossRefGoogle Scholar
  60. 60.
    Allain, C. and Cloitre, M., Optical diffraction on fractals, Phys. Rev. B, 1986, vol. 33, no. 5, pp. 3566–3569.CrossRefGoogle Scholar
  61. 61.
    Khonina, S.N. and Ustinov, A.V., Very compact focal spot in the near-field of the fractional axicon, Opt. Commun., 2017, vol. 391, pp. 24–29.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.IPSI RAS, Branch of the FSRC “Crystallography and Photonics” RASSamaraRussia

Personalised recommendations