Optical Memory and Neural Networks

, Volume 26, Issue 2, pp 145–149 | Cite as

An electric field sensor based on reflected light intensity modulation from electro-optical media

Article
  • 21 Downloads

Abstract

An optical sensor of an alternating electric field is described. The sensing element is a crystal quartz plate which reflects incident light by its front surface. Reflected light intensity is modulated by the tested electric field by means of changing the refractive index of the plate. Modulation of the reflection coefficient of the quartz by the tested electric field occurs due to the electro-optic effect. It is noted that the main advantage of the sensor working on the modulation of the reflected light is the ability to use opaque electro-optical media and thin films.

Keywords

electro-optic sensor modulation of light reflection nontransparent EO media 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yariv, A. and Yeh, P., Optical Waves in Crystals, Wiley-Interscience, 2002, p. 604.Google Scholar
  2. 2.
    Shinagawa, M., Kobayashi, J., Yagi, S., and Sakai, Y., Sensitive electro-optic sensor using KTa(1–x)NbxO3 crystal, Sensors Actuators A, 2013, vol. 192, pp. 42–48.CrossRefGoogle Scholar
  3. 3.
    Qing, Y., Shangpeng, S., Rui, H., Wenxia, S., and Tong, L., Intense transient electric field sensor based on the electro-optic effect of LiNbO3, AIP Adv., 2015, vol. 5, pp. 1071301–1071310.Google Scholar
  4. 4.
    Garzarella, A.S.B., Qadri, D., and Wu, Ho, Optimal electro-optic sensor configuration for phase noise limited, remote field sensing applications, Appl. Phys. Lett., 2009, vol. 94, pp. 2211131–2211133.CrossRefGoogle Scholar
  5. 5.
    Jung, H., Ti:LiNbO3 integrated optic electric-field sensors based on electro-optic effect, Fiber Integrated Opt., 2016, vol. 35, no. 4, pp. 161–180.CrossRefGoogle Scholar
  6. 6.
    Lee, T.-H., Hwang, F.-T. Shay, W.-T., and Lee, C.-T., Electromagnetic field sensor using mach-zehnder waveguide modulator, Microwave Opt. Tech. Lett., 2006, vol. 48, no. 9, pp. 1897–1899.CrossRefGoogle Scholar
  7. 7.
    Meier, T., Kostrzewa, C., Petermann, K., and Schuppert, B., Integrated optical E-field probes with segmented modulator electrodes, J. Light Wave Tech., 1994, vol. 12, no. 8, pp. 1497–1503.CrossRefGoogle Scholar
  8. 8.
    Xiaolong, W., Chunrong, P., Dongming, F., Pengfei, Y., Bo, C., Fengjie, Z., and Shanhong, X., High performance electric field micro sensor with combined differential structure, J. Electron. (China), 2014, vol. 31, no. 2, pp. 143–150.CrossRefGoogle Scholar
  9. 9.
    Wang, W.C., Lotem, H., and Forber, R., Optical electric-field sensors, Opt. Eng., 2006, vol. 45, no 12, pp. 1244021–1244028.CrossRefGoogle Scholar
  10. 10.
    Liokumovich, L.B., Medvedev, A.V., and Petrov, V.M., Fiber-optic polarization interferometer with an additional phase modulation for electric field measurements, Opt. Mem. Neural Networks, 2013, vol. 22, pp. 21–27.CrossRefGoogle Scholar
  11. 11.
    Schildkraut, J.S., Determination of the electro-optic coefficient of a poled polymer film, Appl. Opt., 1990, vol. 29, no. 19, pp. 2839–2841.CrossRefGoogle Scholar
  12. 12.
    Teng, C.C. and Man, H.T., Simple reflection technique for measuring the electro-optic coefficient of poled polymers, Appl. Phys. Lett., 1990, vol. 56, pp. 1734–1736.CrossRefGoogle Scholar
  13. 13.
    Shuto, Y. and Amano, M., Reflection measurement technique of electro-optic coefficients in lithium niobate crystals and poled polymer films, J. Appl. Phys., 1995, vol. 77, pp. 4632–4638.CrossRefGoogle Scholar
  14. 14.
    Lee, H.-Y., Lee, T.-H., Shayc, W.-T., and Lee, C.-T., Reflective type segmented electrooptical electric field sensor, Sensors Actuators A, 2008, vol. 148, pp. 355–358.CrossRefGoogle Scholar
  15. 15.
    Kijima, K., Abe, O., Shimizu, A., Nakamura, T., Kono, H., Hagihara, S., Torikai, E., and Hori, H., Electrooptical field sensor using single total internal reflection in electro optical crystals, Opt. Rev., 2015, vol. 22, pp. 623–628.CrossRefGoogle Scholar
  16. 16.
    Kniazkov, A.V., Estimation of electro-optic coefficients of LiNbO3 and SrxBa(1–x)Nb2O6 crystals by modulation of light reflection coefficient, Opt. Spectrosc., 2015, vol. 118, no. 2, pp. 255–258.CrossRefGoogle Scholar
  17. 17.
    Kniazkov, A.V., Reflective method of electro-optic coefficients estimation, Appl. Phys. B, 2015, vol. 118, no. 2, pp. 231–234.CrossRefGoogle Scholar
  18. 18.
    Raizer, Yu.P., Gas Discharge Physics, Berlin: Springer, 1991, p. 449.Google Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  1. 1.Peter the Great St. Petersburg Polytechnic University, Institute of Physics, Nanotechnology and TelecommunicationsSt. PetersburgRussia

Personalised recommendations