Optical Memory and Neural Networks

, Volume 26, Issue 2, pp 157–164 | Cite as

Extraordinary spin momenta in birefringent structures

  • P. P. Maksimyak
  • A. P. Maksimyak
  • D. I. Ivanskyi
  • T. V. Kiyashchuk
Article
  • 23 Downloads

Abstract

Mechanical action caused by the optical forces connected with the canonical momentum density associated with the local wave vector or classical spin angular momentum, the helicity dependent and the helicity independent forces determined by spin momenta of different nature open attractive prospects to use optical structures for manipulating with nanoobjects of different nature. The main finding of our study consists in demonstration of mechanical action of extraordinary transverse component of the spin angular momentum arising in an evanescent light wave due to the total internal reflection of linearly polarized probing beam with azimuth 45° at the interface ‘birefringent plate–air’.

Keywords

spin angular momentum evanescent wave 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ohanian, H.C., What is spin?, Am. J. Phys., 1986, vol. 54, no. 6, pp. 500–505.CrossRefGoogle Scholar
  2. 2.
    Berry, M.V., Optical currents, J. Opt. A: Pure Appl. Opt., 2009, vol. 11, 094001, p. 12.CrossRefGoogle Scholar
  3. 3.
    Allen, L., Beijersbergen, M.W., Spreeuw, R.J., and Woerdman, J.P., Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes, Phys. Rev. A, 1992, vol. 45, 11, pp. 8185–8189.CrossRefGoogle Scholar
  4. 4.
    Allen, L. and Padgett, M.J., The Poynting vector in Laguerre–Gaussian beams and the interpretation of their angular momentum density, Opt. Commun., 2000, vol. 184, no. 1–4, pp. 67–71.CrossRefGoogle Scholar
  5. 5.
    Angelsky, O.V., Bekshaev, A.Ya., Maksimyak, P.P., Maksimyak, A.P., Mokhun, I.I., Hanson, S.G., Zenkova, C.Yu., and Tyurin, A.V., Circular motion of particles suspended in a Gaussian beam with circular polarization validates the spin part of the internal energy flow, Optics Express, 2012, vol. 20, no. 10, pp. 11351–11356.CrossRefGoogle Scholar
  6. 6.
    Angelsky, O.V., Bekshaev, A.Ya., Maksimyak, P.P., Maksimyak, A.P., Hanson, S.G., and Zenkova, C.Yu., Orbital rotation without orbital angular momentum: mechanical action of the spin part of the internal energy flow in light beams, Optics Express, 2012, vol. 20, no. 4, pp. 3563–3571.CrossRefGoogle Scholar
  7. 7.
    Polyanskii, V.K., Angelsky, O.V., and Polyanskii, P.V., Scattering-induced spectral changes as a singular optical effect, Optica Applicata, 2002, vol. 32, no. 4, pp. 843–848.Google Scholar
  8. 8.
    Angelsky, O., Besaha, R., Mokhun, A., Mokhun, I., Sopin, M., Soskin, M., and Vasnetsov, M., Singularities in vectoral fields, Proc. SPIE, 1999, vol. 3904, pp. 40–54.CrossRefGoogle Scholar
  9. 9.
    Angelsky, O.V., Bekshaev, A.Ya., Maksimyak, P.P., Maksimyak, A.P., Hanson, S.G., and Zenkova, C.Yu., Selfdiffraction of continuous laser radiation in a disperse medium with absorbing particles, Optics Express, 2013, vol. 21, no. 7, pp. 8922–8938.CrossRefGoogle Scholar
  10. 10.
    Angelsky, O.V., Ushenko, A.G., Ushenko, Ye.G., Tomka, Yu.Y., Polarization singularities of biological tissues images, J. Biomed. Opt., 2006, vol. 11, no. 5, p.9.CrossRefGoogle Scholar
  11. 11.
    Angelsky, O.V., Tomka, Yu.Y., Ushenko, A.G., Ushenko, Ye.G., Yermolenko, S.B., Ushenko, Yu.A., 2-D tomography of biotissue images in pre-clinic diagnostics of their pre-cancer states, Proc. SPIE, 2005, vol. 5972, pp. 158–162.Google Scholar
  12. 12.
    Zenkova, C.Yu., Yermolenko, S.B., Angelskaya, A.O., and Soltys, I.V., The polarization peculiarities of the correlation (intrinsic coherence) of optical fields, Opt. Mem. Neural Networks (Inform. Optics), 2011, vol. 20, no. 4, pp. 247–254.CrossRefGoogle Scholar
  13. 13.
    Zenkova, C.Yu., Gorsky, M.P., Soltys, I.V., and Angelsky, P.O., The investigation of the peculiarities of the motion of testing nanoobjects in the inhomogeneously-polarized optical field, Opt. Mem. Neural Networks (Inform. Optics), 2012, vol. 21, no. 1, pp. 34–44.CrossRefGoogle Scholar
  14. 14.
    Zenkova, C.Yu., Gorsky, M.P., and Ryabyj, P.A., Phase retrieval of speckle fields based on 2D Hilbert transform, Opt. Mem. Neural Networks (Inform. Optics), 2015, vol. 24, no. 4, pp. 303–308.CrossRefGoogle Scholar
  15. 15.
    Zenkova, C.Yu., Gorsky, M.P., Ryabiy, P.A., and Angelskaya, A.O., Additional approaches to solving the phase problem in optics, Appl. Opt., 2016, vol. 55, no. 12, pp. B78–B84.CrossRefGoogle Scholar
  16. 16.
    Zenkova, C.Yu., Gorsky, M.P., and Ryabyi, P.A., The phase problem solving by the use of optical correlation algorithm for reconstructing phase skeleton of complex optical fields, Proc. SPIE, 2015, vol. 9258, pp. 92582B–2–92582B–6.Google Scholar
  17. 17.
    Zenkova, C.Yu., Interconnection of polarization properties and coherence of optical fields, Appl. Opt., 2014, vol. 53, no. 10, pp. B43–B52.CrossRefGoogle Scholar
  18. 18.
    Zenkova, C.Yu., Gorsky, M.P., Soltys, I.V., and Angelsky, P.O., Use of motion peculiarities of test particles for estimating degree of coherence of optical fields, Ukr. J. Phys. Opt., 2012, vol. 13, no. 4, pp. 183–195.CrossRefGoogle Scholar
  19. 19.
    Zenkova, C.Yu., Kramar, V.M., and Kramar, N.K., Polarization optical bistability in layer crystals, Proc. SPT, 2006, pp. 254–257.Google Scholar
  20. 20.
    Angelsky, O.V., Zenkova, C.Yu., Gorsky, M.P., Soltys, I.V., and Angelsky, P.O., The use of new approaches to estimating the coherence properties of mutually orthogonal beams, Open Opt. J., 2013, vol. 7, pp. 5–2.CrossRefGoogle Scholar
  21. 21.
    Angelsky, O.V., Zenkova, C.Y., Gorsky, M.P., and Gorodynśka, N.V., Feasibility of estimating the degree of coherence of waves at the near field, Appl. Opt., 2009, vol. 48, no. 15, pp. 2784–2788.CrossRefGoogle Scholar
  22. 22.
    Antognozzi, M., Bermingham, C.R., Hoerber, H., Dennis, M.R., Bekshaev, A.Y., Harniman, R.L., Simpson, S., Senior, J., Bliokh, K.Y., and Nori, F., Direct measurements of the extraordinary optical momentum and transverse spin-dependent force using a nano-cantilever, Nat. Phys., 2016, p. 5.Google Scholar
  23. 23.
    Friese, M.E.J., Nieminen, T.A., Heckenberg, N.R., and Rubinsztein-Dunlop, H., Optical alignment and spinning of laser-trapped microscopic particles, Nature, 1998, vol. 394, pp. 348–350.CrossRefGoogle Scholar
  24. 24.
    Rockstuhl, C. and Herzig, H.P., Calculation of the torque on dielectric elliptical cylinders, J. Opt. Soc. Am. A, 2005, vol. 22, 1, pp. 109–116.CrossRefGoogle Scholar
  25. 25.
    Bekshaev, A.Ya., Angelsky, O.V., Sviridova, S.V., and Zenkova, C.Yu., Mechanical action of inhomogeneously polarized optical fields and detection of the internal energy flows, Adv. Opt. Technol., 2011, vol. 2011, p. 11.CrossRefGoogle Scholar
  26. 26.
    Bliokh, K.Y., Bekshaev, A.Y., and Nori, F., Extraordinary momentum and spin in evanescent waves, Nat. Commun., 2014, vol. 5, no. 3300.CrossRefGoogle Scholar
  27. 27.
    Hayata, A., Muellera, J.P.B., and Capassoa, F., Lateral chirality-sorting optical forces, PNAS Early Edition, 2015, p. 5.Google Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • P. P. Maksimyak
    • 1
  • A. P. Maksimyak
    • 1
  • D. I. Ivanskyi
    • 1
  • T. V. Kiyashchuk
    • 2
  1. 1.Chernivtsi National UniversityChernivtsiUkraine
  2. 2.RUDN UniversityMoscowRussia

Personalised recommendations