Optical Memory and Neural Networks

, Volume 26, Issue 2, pp 137–144 | Cite as

A differential image compression method using adaptive parameterized extrapolation



The paper deals with an image compression method using differential pulse-code modulation (DPCM) with an adaptive extrapolator capable of adjusting itself to local distinctions of image contours (boundaries). A negative effect of quantization on the optimization of the adaptive extrapolator is investigated. Even so the experiment has shown that the use of an adaptive extrapolator is more effective than the use of prototypes. We have studied the method as a whole with close consideration given to the coding of the quantized signal. The maximal error criterion and a Waterloo grey set of real patterns are used to compare the method with the JPEG technique.


scimage compression DPCM extrapolation quantization statistical coding compression ratio 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chang, C., Hyperspectral Data Processing: Algorithm Design and Analysis, Wiley Press, 2013, 1164 p.Google Scholar
  2. 2.
    Sayood, K., Introduction to Data Compression. The Morgan Kaufmann Series in Multimedia Information and Systems, 4 ed., 2012, p. 743.Google Scholar
  3. 3.
    Salomon, D., Data Compression, The Complete Reference, 4 ed., Springer-Verlag, 2007, 1118 p.Google Scholar
  4. 4.
    Vatolin, D., Data Compression Methods, Archiver designs, image and video compression, Vatolin, D., Ratushnyak, A., Smirnov, M., and Yukin, V., Ed., DIALOG-MIFI, 2002, 384 p.Google Scholar
  5. 5.
    Woods, E., Digital Image Processing, 3 ed., Woods, E. and Gonzalez, R., Ed., Prentice Hall, 2007, 976 p.Google Scholar
  6. 6.
    Pratt, W., Digital Image Processing, 4 ed., Wiley, 2007, 807 p.Google Scholar
  7. 7.
    Woon, W.M., Achieving high data compression of self-similar satellite images using fractal, Woon, W.M., Ho, A.T.S., Yu, T., Tam, S.C., Tan, S.C., and Yap, L.T., Ed., Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2000, pp. 609–611.Google Scholar
  8. 8.
    Gupta, V., Enhanced image compression using wavelets, Gupta, V., Sharma, V., and Kumar, A., Eds., Int. J. Res. Eng. Sci. (IJRES), 2014, vol. 2, no. 5, pp. 55–62.Google Scholar
  9. 9.
    Li, J., Image Compression: The Mathematics of JPEG-2000, Modern Signal Processing, MSRI Publications, 2003, vol. 46, pp. 185–221.MathSciNetMATHGoogle Scholar
  10. 10.
    Plonka, G. and Tasche, M., Fast and numerically stable algorithms for discrete cosine transforms, Plonka, G. and Tasche, M., Eds., Linear Algebra and Its Appl., 2005, vol. 394, no. 1, pp. 309–345.MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Wallace, G., The JPEG still picture compression standard, Commun. ACM, 1991, vol. 34, no. 4, pp. 30–44.CrossRefGoogle Scholar
  12. 12.
    Ebrahimi, F., JPEG vs. JPEG2000: An objective comparison of image encoding quality, Ebrahimi, F, Chamik, M., and Winkler, S., Proceedings of SPIE Applications of Digital Image Processing XXVII, 2004, vol. 5558, pp. 300–308.CrossRefGoogle Scholar
  13. 13.
    Gashnikov, M., Interpolation for hyperspectral images compression, CEUR Workshop Proceedings, 2016, vol. 1638, pp. 327–333.Google Scholar
  14. 14.
    Gashnikov, M., Development and investigation of a hierarchical compression algorithm for storing hyperspectral images, Gashnikov, M.V. and Glumov, N.I., Eds., Opt. Mem. Neural Networks (Allerton Press), 2016, vol. 25, no. 3, pp. 168–179.CrossRefGoogle Scholar
  15. 15.
    Gashnikov, M.V., Adaptive parametrized predictor for differential image compression, Gashnikov, M.V. and Mullina, S.F., Eds., Proc. of the International Conf. “Informational Technologies and Nanotechnologies”, Samara, 2015, pp. 64–67.Google Scholar
  16. 16.
    Efimov, V.M., Evaluation of the lossless hierarchical and line-by-line grey image compression algorithms efficiency, Efimov, V.M. and Kolesnikov, A.N., Thesis at the third conf. “Pattern Recognition and Image Analysis: New Informational Technologies”, Nizhny Novgorod, 1997, Part I, pp. 157–161.Google Scholar
  17. 17.
    Lin, S., Error Control Coding: Fundamentals and Applications, 2nd ed., Lin, S. and Costello, D., New Jersey: Prentice-Hall,Inc. Englewood Cliffs, 2004, 1260 p.Google Scholar
  18. 18.
    Chang, C., Hyperspectral Data Exploitation: Theory and Applications, Wiley-Interscience, 2007, 440 p.Google Scholar
  19. 19.
    Gashnikov, M.V., Hierarchical GRID interpolation under hyperspectral images compression, Gashnikov, M.V. and Glumov, N.I., Opt. Mem. Neural Networks (Inform. Optics) (Allerton Press), 2014, vol. 23, no. 4, pp. 246–253.CrossRefGoogle Scholar
  20. 20.
    Borengasser, M., Hyperspectral Remote Sensing, Principles and Applications, Borengasser, M., Hungate, W., and Watkins, R., CRC Press, 2004, 128 p.Google Scholar
  21. 21.
    Waterloo Grey Set, University of Waterloo Fractal coding and analysis group: Mayer Gregory Image Repository. http://links. Cited December 19, 2016.Google Scholar
  22. 22.
    Gashnikov, M.V., Onboard processing of hyperspectral data in the remote sensing systems based on hierarchical compression, Gashnikov, M.V. and Glumov, N.I., Comput. Opt., 2016, vol. 40, no. 4, pp. 543–551.Google Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  1. 1.Samara National Research UniversitySamaraRussia

Personalised recommendations