The Influence of Dispersed Composition of SiC on the Physico-Mechanical Properties of Reactive-Sintered Silicon Carbide

Abstract

In this paper, dense ceramic materials based on silicon carbide have been obtained by the method of reactive sintering with a high level of mechanical properties, used as friction units (sliding bearings, parts of friction pairs) and high-temperature products, refractory materials, etc. The effect of the different dispersed composition of silicon carbide powders on the microstructure, grain size after sintering, and the physical and mechanical properties is shown.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.

REFERENCES

  1. 1

    Briggs, J., Engineering Ceramics in Europe and the USA, Worcester, UK: Enceram. Meith Wood, 2011.

    Google Scholar 

  2. 2

    Kolomeichenko, A.V., Increasing the wear resistance of cermet coatings applied by the method of carbovibro-arc hardening, Probl. Mashinostr. Avtom., 2019, no. 4, p. 4.

  3. 3

    Drozdov, Yu.N., Tribology of technical ceramics, Probl. Mashinostr. Nadezhnosti Mash., 2003, no. 6, p. 51.

  4. 4

    Nosenko, V.A., Influence of contact interaction on wear of an abrasive tool during grinding, Probl. Mashinostr. Nadezhnosti Mash., 2005, no. 1, p. 73.

  5. 5

    Drozdov, Yu.N., Prikladnaya tribologiya (trenie, iznos, smazka) (Applied Tribology (Friction, Wear, and Lubrication), Drozdov, Yu.N., Yudin, E.G., and Belov, A.I., Moscow: Eko-Press, 2010.

  6. 6

    Garshin, A.P., Gropyanov, V.M., Zaitsev, G.P., and Semenov, S.S., Keramika dlya mashinostroeniya (Ceramics for Mechanical Engineering), Moscow: Nauchtekhlitizdat, 2003.

  7. 7

    Garshin, A.P. and Chulkin, S.G., Reaktsionnospechennye karbidokremnievye materialy konstruktsionnogo naznacheniya. Fiziko-mekhanicheskie i tribotekhnicheskie svoistva (Reaction-Sintered Carbide-Silicon Materials for Construction Purposes. Physicomechanical and Tribological Properties), St. Petersburg: Politekh. Univ., 2006.

  8. 8

    Paranosenkov, V.P., Chikina, A.A., and Andreev, M.A., Structural materials based on self-bonded silicon carbide, Ogneupory Tekh. Keram., 2006, no. 7, p. 37.

  9. 9

    Paranosenkov, V.P., Chikina, A.A., and Shkarupa, I.L., Self-bonded silicon carbide OTM-923, Ogneupory Tekh. Keram., 2004, no. 2, p. 23.

  10. 10

    Garshin, A.P., Structure and properties of construction wear-resistant materials based on silicon carbide obtained by reaction sintering, Doctoral (Eng.) Dissertation, St. Petersburg: Polytech. Univ., 2000.

  11. 11

    Fedoruk, R.M., Primachenko, V.V., Savina, L.K., Poltarak, E.V., et al., Investigation of the effect of graphite additives and the specific surface area of silicon on thermal conductivity and other properties of reaction-bonded silicon carbide products, Sb. Nauchn. Tr., 2004, vol. 104, p. 31.

    Google Scholar 

  12. 12

    Huang, Q.-W. and Zhu, L.-H., High-temperature strength and toughness behaviors for reaction-bonded SiC ceramics below 1400°C, Mater. Lett., 2005, vol. 59, nos. 14–15, p. 1732.

    Article  Google Scholar 

  13. 13

    Clijsters, S., Liu, K., Reynaerts, D., and Lauwers, B., EDM technology and strategy development for the manufacturing of complex parts in SiSiC, J. Mater. Process. Technol., 2010, vol. 210, no. 4, p. 631.

    Article  Google Scholar 

  14. 14

    Sangsuwan, P., Orejas, J.A., Gatica, J.E., Tewari, S.N., et al., Reaction-bonded silicon carbide by reactive infiltration, Ind. Eng. Chem. Res., 2001, vol. 40, no. 23, p. 5191.

    Article  Google Scholar 

  15. 15

    Wang, Y.-X., Tan, Sh.-H., and Jiang, D.-L., The fabrication of reaction-formed silicon carbide with controlled microstructure by infiltrating a pure carbon preform with molten Si, Ceram. Int., 2004, vol. 30, no. 3, p. 435.

    Article  Google Scholar 

  16. 16

    Paranosenkov, V.P., Chikina, A.A., and Andreev, M.A., Structural materials based on self-bonded silicon carbide, Ogneupory Tekh. Keram., 2006, no. 7, p. 37.

  17. 17

    Paranosenkov, V.P., Chikina, A.A., and Shkarupa, I.L., Self-bonded silicon carbide OTM-923, Ogneupory Tekh. Keram., 2004, no. 2, p. 23.

  18. 18

    Garshin, A.P. and Chulkin, S.G., Reaktsionnospechennye karbidokremnievye materialy konstruktsionnogo naznacheniya. Fiziko-mekhanicheskie i tribotekhnicheskie svoistva (Reaction-Sintered Carbide-Silicon Materials for Construction Purposes. Physicomechanical and Tribological Properties), St. Petersburg: Politekh. Univ., 2006.

  19. 19

    Perevislov, S.N., Evaluation of the crack resistance of reactive sintered composite boron carbide-based materials, Refract. Ind. Ceram., 2019, vol. 60, no. 3, p. 168.

    Article  Google Scholar 

  20. 20

    Perevislov, S.N., Lysenkov, A.S., Titov, D.D., Tomkovich, M.V., et al., Production of ceramic materials based on SiC with low-melting oxide additives, Glass Ceram., 2019, vol. 75, nos. 9–10, p. 400.

    Article  Google Scholar 

  21. 21

    Frolova, M.G., Leonov, A.V., Kargin, Y.F., Lysenkov, A.S., et al., Molding features of silicon carbide products by the method of hot slip casting, Inorg. Mater.: Appl. Res., 2018, vol. 9, no. 4, p. 675.

    Article  Google Scholar 

  22. 22

    Perevislov, S.N., Lysenkov, A.S., Titov, D.D., and Tomkovich, M.V., Hot-pressed ceramic SiC–YAG materials, Inorg. Mater., 2017, vol. 53, no. 2, p. 220.

    Article  Google Scholar 

  23. 23

    Lysenkov, A.S., Kim, K.A., Titov, D.D., Frolova, M.G., et al., Composite material Si3N4/SiC with calcium aluminate additive, J. Phys.: Conf. Ser., 2018, vol. 1134, no. 1.

  24. 24

    Perevislov, S.N., Shcherbak, P.V., and Tomkovich, M.V., Phase composition and microstructure of reaction-bonded boron-carbide materials, Refract. Ind. Ceram., 2018, vol. 59, no. 2, p. 179.

    Article  Google Scholar 

  25. 25

    Perevislov, S.N., Lysenkov, A.S., Titov, D.D., Tomkovich, M.V., et al., Materials based on boron carbide obtained by reaction sintering, IOP Conf. Ser.: Mater. Sci. Eng., 2019, vol. 525, no. 1.

  26. 26

    Markov, M.A., Ordan’yan, S.S., Vikhman, S.V., Perevislov, S.N., et al., Preparation of MoSi2–SiC–ZrB2 structural ceramics by free sintering, Refract. Ind. Ceram., 2019, vol. 60, no. 4, p. 385.

    Article  Google Scholar 

  27. 27

    Ordan’yan, S.S., Rumyantsev, V.I., Nesmelov, D.D., and Korablev, D.V., Physicochemical basis of creating new ceramics with participation of boron-containing refractory compounds and its practical implementation, Refract. Ind. Ceram., 2012, vol. 53, no. 2, p. 108.

    Article  Google Scholar 

  28. 28

    Ordan’yan, S.S., Nesmelov, D.D., Danilovich, D.P., and Udalov, Y.P., Revisiting the structure of SiC–B4C–MedB2 systems and prospects for the development of composite ceramic materials based on them, Russ. J. Non-Ferrous Met., 2017, vol. 58, no. 5, p. 545.

    Article  Google Scholar 

  29. 29

    Perevislov, S.N., Afanas’eva, L.E., and Baklanova, N.I., Mechanical properties of SiC–fiber-reinforced reaction-bonded silicon carbide, Inorg. Mater., 2020, vol. 56, no. 4, p. 425.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. N. Perevislov.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by Sh. Galyaltdinov

About this article

Verify currency and authenticity via CrossMark

Cite this article

Perevislov, S.N., Tomkovich, M.V., Markov, M.A. et al. The Influence of Dispersed Composition of SiC on the Physico-Mechanical Properties of Reactive-Sintered Silicon Carbide. J. Mach. Manuf. Reliab. 49, 511–517 (2020). https://doi.org/10.3103/S1052618820060072

Download citation

Keywords:

  • silicon carbide
  • reactive sintering
  • physical and mechanical properties
  • microstructure.