Skip to main content
Log in

Ultrasonic Burnishing of Titanium Alloys

  • New Technologies in Mechanical Engineering
  • Published:
Journal of Machinery Manufacture and Reliability Aims and scope Submit manuscript

Abstract

This paper presents research results concerning the influence of ultrasonic burnishing on the structure and mechanical properties of ultra-fine grain titanium alloys: commercial pure titanium BT1-0 and an over stoichiometric alloy with the shape memory Ti49.3Ni50.7. It was shown by the methods of optical microscopy and transmission electronic microscopy that in the surface layer of 20 μm thickness, the ultrasonic burnishing in coarse-grained titanium forms a nanostructure with a grain size of 100 nm, and it additionally decreases the size of crystals from 100 to 30 nm in the nanostructural titanium nickelide. The ultrasonic treatment of alloys greatly increases the strength and micro- and nanohardness of the surface layer, decreases the roughness, forms the gradient nanostructure, improves the lifetime, and expands the functionalities of the items.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Valiev, R.Z. and Aleksandrov, I.V., Ob’emnye nanostrukturnye metallicheskie materialy: poluchenie, struktura i svoistva (Bulk Nanostructured Metallic Materials: Production, Structure and Properties), Moscow: Akademkniga, 2007.

    Google Scholar 

  2. Edalati, K. and Horita, Z., A review on high-pressure torsion (HPT) from 1935 to 1988, Mater. Sci. Eng. A, 2016, vol. 652, pp. 325–352.

    Article  Google Scholar 

  3. Golovin, Yu.I., Vvedenie v nanotekhniku (Introduction to Nanoengineering), Moscow: Mashinostroenie, 2007.

    Google Scholar 

  4. Wua, X., Jiang, P., Chena, L., Yuan, F., and Zhu, Y.T., Extraordinary strain hardening by gradient structure, Proc. Natl. Acad. Sci. U.S.A., 2014, vol. 111, no. 20, pp. 7197–7201.

    Article  Google Scholar 

  5. Beygelzimer, Y., Estrin, Y., and Kulagin, R., Synthesis of hybrid materials by severe plastic deformation: a new paradigm of SPD processing, Adv. Eng. Mater., 2015, vol. 17. doi doi 10.1002/adem.201500083

    Google Scholar 

  6. Wang, Y., Molotnikov, A., Diez, M., Lapovok, R., Kim, H., Wang, J., and Estrin, Y., Gradient structure produced by three roll planetary milling: numerical simulation and microstructural observations, Mater. Sci. Eng. A, 2015, vol. 639, pp. 165–172.

    Article  Google Scholar 

  7. Yurchenko, L.I., Dyupin, A.P., Gunderov, D.V., Valiev, R.Z., et al., Mechanical properties and structure of high-strength nanostructured nickel-titanium alloys subjected to ECAP and rolling, Faz. Perekh., Uporyad. Sost. Novye Mater., El. Zh., 2006, no. 10.

    Google Scholar 

  8. Kolobov, Y.R., Manokhina, S.S., Kolobova, A.Yu., et al., Shock-wave-induced grain refinement and phase state modification in coarse-grained and nanocrystalline titanium, Tech. Phys. Lett., 2016, vol. 42, no. 9, pp. 959–962.

    Article  Google Scholar 

  9. Stolyarov, V.V., Ugurchiev, U.Kh., Trubitsyna, I.B., et al., Intensive electroplastic deformation of TiNi alloy, Fiz. Tekh. Vys. Davl., 2006, no. 4, pp. 48–51.

    Google Scholar 

  10. Stolyarov, V.V., Deformability and nanostructuring of shape memory TiNi alloys during the electroplastic rolling, Mater. Sci. Eng. A, 2009, vol. 503, pp. 18–20.

    Article  Google Scholar 

  11. Lesyuk, E.A. and Alekhin, V.P., Formirovanie nano- i submikrokristallicheskikh struktur v instrumental’nykh i konstruktsionnykh materialakh i obespechenie ikh termicheskoi stabil’nosti: monografiya (Formation of Nano- and Submicrocrystalline Structures in Instrumental and Structural Materials and Ensuring their Thermal Stability), Moscow: MGIU, 2009.

    Google Scholar 

  12. Mordyuk, B. and Prokopenko, G., Ultrasonic impact peening for the surface properties’ management, J. Sound Vib., 2007, vol. 308, pp. 855–866.

    Article  Google Scholar 

  13. Astashev, V.K. and Krupenin, V.L., Nelineinaya dinamika ul’trazvukovykh tekhnologicheskikh protsessov (Nonlinear Dynamics of Ultrasonic Technological Processes), Moscow: MGUP im. Iv. Fedorova, 2016.

    Google Scholar 

  14. Klimenov, V.A., Kovalevska, Zh.G., Uvarkin, P.V., et al., Ultrasonic finishing treatment and its influence on coating properties, Fiz. Mezomekh., 2004, vol. 7, spec. iss., pp. 157–160.

    Google Scholar 

  15. Lotkov, A.I., Baturin, A.A., Grishkov, V.N., et al., Structural defects and mesorelief of the titanium nichelide surface after severe plastic deformation by an ultrasonic method, Fiz. Mezomekh., 2005, vol. 109, no. 8, pp. 109–112.

    Google Scholar 

  16. Shape Memory Alloys: Fundamentals, Modeling and Applications, Brailovski, V., Prokoshkin, S., Terriault, P., and Trochu, F., Eds., Montreal: ETS, Univ. Québec, 2003.

  17. Cismasiu, C., Shape Memory Alloys, Croatia: SCIYO, 2010.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Stolyarov.

Additional information

Original Russian Text © V.V. Stolyarov, 2018, published in Problemy Mashinostroeniya i Nadezhnosti Mashin, 2018, No. 6.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stolyarov, V.V. Ultrasonic Burnishing of Titanium Alloys. J. Mach. Manuf. Reliab. 47, 537–542 (2018). https://doi.org/10.3103/S1052618818060110

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1052618818060110

Navigation