Skip to main content
Log in

Electrical and Physical Parameters of Plasma Fluxes in Exhaust from a Liquid-Propellant Rocket Engine

  • Mechanics of Machines
  • Published:
Journal of Machinery Manufacture and Reliability Aims and scope Submit manuscript

Abstract

The structure of the disturbed area near the internal surface of the nozzle of a liquid-propellant rocket engine (LPRE) and also the distribution of the electrical and physical parameters in the flux of dense weakly ionized plasma are examined by means of mathematical simulation. The results of probe measurements of charged particle concentration in combustion products in the exhaust from the nozzle of a liquid-propellant rocket engine under real conditions at the moment of rocket lift-off from the launching site are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yagodnikov, D.A. and Rudinskii, A.V., Diagnostics of rocket and jet engines through characteristics of the intrinsic electromagnetic field of combustion products, High Temp., 2017, vol. 55, no. 5, pp. 808–824.

    Article  Google Scholar 

  2. Egorova, Z.M., Koshevarov, A.V., Fomin, E.A., and Tskhai, N.S., Measuring the concentration of charged particles by a cylindrical Langmuir probe in a flame plasma, Teplofiz. Vys. Temp., 1988, vol. 26, no. 3, pp. 533–581.

    Google Scholar 

  3. Egorova, Z.M., Koshevarov, A.V., and Tskhai, N.S., About ionic saturation current on electric probes in a flame plasma with an alkaline additive, Teplofiz. Vys. Temp., 1994, vol. 32, no. 1, p. 12.

    Google Scholar 

  4. Kashevarov, N.V., About probe measurements in a flame plasma, Teplofiz. Vys. Temp., 1994, vol. 30, no. 6, pp. 1220–1223.

    Google Scholar 

  5. Cherepnin, S.N., The study of electrophysical phenomena in the combustion chambers of jet engines, Fiz. Goreniya Vzryva, 1990, vol. 26, no. 2, p. 58.

    Google Scholar 

  6. Bogoslovskii, V.P., Zaichikov, V.V., and Samoilov, I.B., About probe measurements of flame ionization, Fiz. Goreniya Vzryva, 1974, vol. 10, no. 5, p. 705.

    Google Scholar 

  7. Cherepnin, S.N., On the effect of ionizing additives and the external electric field on combustion and oxidation, Fiz. Goreniya Vzryva, 1991, vol. 27, no. 1, p. 75.

    Google Scholar 

  8. Vatazhin, A.B., Frequency characteristics of a negative corona discharge in a turbulent jet, Vestn. Nizhegor. Univ., Mekh. Zhidk. Gaza, 2001, no. 4 (3), p. 677.

    Google Scholar 

  9. Vatazhin, A.B., Kazakov, A.F., Likhter, V.A., et al., Investigation of the electrical characteristics of jet streams emanating from aircraft engines, Tr. TsIAM, 1974, no. 628, p. 4.

    Google Scholar 

  10. Pinchuk, V.A., Gribakin, V.A., and Boldyrev, A.S., Diagnosis of technical state of liquid-fuel rocket engines on the basis of electrophysical measurements, Mekhatron., Avtomatiz., Upravl., 2007, no. 11, p. 17.

    Google Scholar 

  11. Nagel’, Yu.A., Electrification of engines with the expiration of combustion products Experimental results, Tech. Phys., 1999, vol. 44, no. 8, pp. 918–922.

    Article  Google Scholar 

  12. Yagodnikov, D.A., Bobrov, A.N., and Filimonov, L.A., Experimental and theoretical study and development of electrical and physical methods of monitoring and diagnostics of liquid-propellant rocket engines, Vestn. MGTU im. N.E. Baumana, Ser. Mashinostr., 2009, no. 3, p. 67.

    Google Scholar 

  13. Kotel’nikov, V.A. and Kotel’nikov, M.V., A cylindrical probe in a flow of slowly moving collisional plasma, High Temp., 2008, vol. 46, no. 3, pp. 306–310.

    Article  Google Scholar 

  14. Loitsyanskii, L., Mekhanika zhidkosti i gaza (Mechanics of Liquid and Gases), Moscow: Nauka, 1987; Oxford: Pergamon, 1966.

    Google Scholar 

  15. Schlichting, H., Boundary-Layer Theory, Berlin Heidelberg: Springer, 2017.

    Book  MATH  Google Scholar 

  16. Kotel’nikov, M.V., Ploskie elektricheskie zondy: teoriya i prilozheniya (Flat Electric Probes: Theory and Applications), Moscow: Mosk. Aviats. Inst., 2014.

    Google Scholar 

  17. Kotel’nikov, V.A. and Kotel’nikov, M.V., Zondovaya diagnostika plazmennykh potokov (Probe Diagnostics of Plasma Flows), Izhevsk: Regulyar. Khaotich. Dinamika, 2016.

    Google Scholar 

  18. Yagodnikov, D.A., Voronetskii, A.V., and Pushkin, N.M., The study of the electrification of a liquid rocket nozzle, Fiz. Goreniya Vzryva, 1995, vol. 31, no. 4, p. 54.

    Google Scholar 

  19. Kotel’nikov, V.A., Kotel’nikov, M.V., and Morozov, A.V., Matematicheskoe modelirovanie vzaimodeistviya potoka razrezhennoi plazmy s magnitnym polem (Mathematical Modeling of the Interaction of a Rarefied Plasma Stream with a Magnetic Field), Moscow: Mosk. Aviats. Inst., 2015.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Kotel’nikov.

Additional information

Original Russian Text © V.A. Kotel’nikov, M.V. Kotel’nikov, G.S. Filippov, 2018, published in Problemy Mashinostroeniya i Nadezhnosti Mashin, 2018, No. 6.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotel’nikov, V.A., Kotel’nikov, M.V. & Filippov, G.S. Electrical and Physical Parameters of Plasma Fluxes in Exhaust from a Liquid-Propellant Rocket Engine. J. Mach. Manuf. Reliab. 47, 488–494 (2018). https://doi.org/10.3103/S1052618818060067

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1052618818060067

Navigation