Skip to main content
Log in

Dynamic Analysis of the Spherical Part of the Parallel Manipulator Taking into Account the Control Law

  • Mechanics of Machines
  • Published:
Journal of Machinery Manufacture and Reliability Aims and scope Submit manuscript

Abstract

A parallel manipulator with six degrees of freedom is considered. A dynamic model for the spherical part of the manipulator is presented. Dynamic analysis is carried out. The real laws of motion of the output link of the spherical part of the manipulator are determined by the screw theory method based on solution of the inverse dynamic problem and the direct velocity problem. The effect of the initial conditions and feedback coefficients on the error of the real law of motion of the output link is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clavel, R., Delta, a fast robot with parallel geometry, in Proceedings of the 18th International Symposium on Industrial Robot, Lausanne, April 26–28, 1988, pp. 91–100.

    Google Scholar 

  2. Chablat, D., Wenger, Ph., and Staicu, S., Dynamics of the orthoglide parallel robot, UPB Sci. Bull., Ser. D: Mech. Eng., 2009, vol. 71, no. 3, pp. 3–16.

    Google Scholar 

  3. Nosova N.Yu., Glazunov V.A., Palochkin S.V., Kheilo S.V., and Komisaruk, L.V., Spatial mechanism with 6 degrees of freedom, RF Patent no. 2536735, Byull. Izobret., 2014, no. RU 2536735 C1.

    Google Scholar 

  4. Kheilo, S.V., Glazunov, V.A., Palochkin, S.V., and Vybornov, A.P., Control by planar parallel mechanism, Mashinostr. Inzh. Obrazov., 2014, no. 3, pp. 2–7.

    Google Scholar 

  5. Kheilo, S.V., Glazunov, V.A., and Palochkin, S.V., Manipulation mechanisms of parallel structure, in Dinamicheskii analiz i upravlenie: monografiya (Dynamic Analysis and Control), Moscow: FGBOU VPO “MGUDT”, 2014.

    Google Scholar 

  6. Glazunov, V.A. and Kheilo, S.V., Controlling the spherical mechanism of parallel structure, Probl. Mashinostr. Avtomatiz., 2014, no. 2, pp. 27–35.

    Google Scholar 

  7. Kheilo, S.V. and Glazunov, V.A., Controlling the progressive-directing mechanism of parallel structure, Inzh. Zh., 2013, no. 10, pp. 9–14.

    Google Scholar 

  8. Glazunov, V. and Kheylo, S., Dynamics and control of planar, translational, and spherical parallel manipulators, in Dynamic Balancing of Mechanisms and Synthesizing of Parallel Robots, Zhang, D. and Wei, B., Switzerland: Springer, 2016, pp. 365–402.

    Chapter  Google Scholar 

  9. Kheilo, S.V., Glazunov, V.A., Kulemkin, Yu.V., and Efros, V.L., Analysis of accelerations and nonlinear oscillations of a spherical mechanism of parallel structure, J. Mach. Manuf. Reliab., 2013, vol. 42, no. 3, pp. 184–191.

    Article  Google Scholar 

  10. Krut’ko, P.D., Obratnye zadachi dinamiki upravlyaemykh sistem. Nelineinye modeli (Inverse Problems of the Dynamics of Controlled Systems), Moscow: Nauka, 1988.

    MATH  Google Scholar 

  11. Nosova, N.Yu., Glazunov, V.A., and Palochkin, S.V., Dynamics of a parallel structure mechanism with provision for the law of control, Mashinostr. Inzh. Obrazov., 2015, no. 4, pp. 13–20.

    Google Scholar 

  12. Nosova, N.Yu., Glazunov, V.A., Palochkin, S.V., and Terekhova, A.N., Synthesis of mechanisms of parallel structure with kinematic interchange, J. Mach. Manuf. Reliab., 2014, vol. 43, no. 5, pp. 378–383.

    Article  Google Scholar 

  13. Glazunov, V., Nosova, N., and Ceccarelli, M., Kinematics of a 6 DOFs manipulator with interchangeable translation and rotation motions, in Recent Advances in Mechanism Design for Robotics, Proceedings of the 3rd IFToMM Symposium on Mechanism Design for Robotics, Vol. 33 of Mechanisms and Machine Science, Switzerland: Springer, 2015, pp. 407–416.

    Google Scholar 

  14. Kreinin, G.V. and Misyurin, S.Yu., Selection of the scheme for incorporating a drive into the structure of a mechanism in solving problems of kinematic synthesis, J. Mach. Manuf. Reliab., 2008, vol. 37, no. 1, pp. 1–5.

    Google Scholar 

  15. Kreinin, G.V. and Misyurin, S.Yu., Choice of the law for a position control system, J. Mach. Manuf. Reliab., 2012, vol. 41, no. 4, pp. 331–336.

    Article  Google Scholar 

  16. Kreinin, G.V. and Misyurin, S.Yu., Phased synthesis of a mechatronic system, Dokl. Phys., 2014, vol. 59, no. 11, pp. 539–543.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Yu. Nosova.

Additional information

Original Russian Text © N.Yu. Nosova, S.V. Kheilo, V.A. Glazunov, A.V. Tsar’kov, 2018, published in Problemy Mashinostroeniya i Nadezhnosti Mashin, 2018, No. 3, pp. 3–11.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nosova, N.Y., Kheilo, S.V., Glazunov, V.A. et al. Dynamic Analysis of the Spherical Part of the Parallel Manipulator Taking into Account the Control Law. J. Mach. Manuf. Reliab. 47, 205–212 (2018). https://doi.org/10.3103/S1052618818030111

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1052618818030111

Navigation