Skip to main content
Log in

Kinetics of Structure Formation in the Heating of Cold-Rolled Automotive Steel Sheet

  • Published:
Steel in Translation Aims and scope

Abstract

The softening kinetics associated with recovery and recrystallization is investigated, along with the kinetics of phase transformation (austenitization) on heating cold-rolled autompotive steel sheet. The kinetics of softening in isothermal holding is studied using the Gleeble 3800 system for 12 steels, and the phase transformation in continuous heating at constantrate is studied for 6 steels of different strength class, with different chemical composition. Considerable slowing of the steel’s recovery and recrystallization is observed with increase in the Mn and Ti content in the ferrite solid solution. The grain size of the recrystallized ferrite hardly depends on the annealing temperature. The results may be used in developing a quantitative integral model to describe the complex microstructural evolution of cold-rolled steel sheet on annealing in industrial production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang, J., Poole, W.J., and Militzer, M., Austenite formation during intercritical annealing, Metall. Mater. Trans. A, 2004, vol. 35, pp. 3364–3375.

    Google Scholar 

  2. Asadi Asadabad, M., Goodarzi, M., and Kheirandish, S., Kinetics of austenite formation in dual phase steels, ISIJ Int., 2008, vol. 48, no. 9, pp. 1251–1255.

    Article  Google Scholar 

  3. Ogawa, T., Maruyama, N., Sugiura, N., and Yoshinaga, N., Incomplete recrystallization and subsequent microstructural evolution during intercritical annealing in cold-rolled low carbon steels, ISIJ Int., 2010, vol. 50, pp. 469–475.

    Article  Google Scholar 

  4. Azizi-Alizamini, H., Militzer, M., and Poole, W.J., Austenite formation in plain low-carbon steels, Metall. Mater. Trans. A, 2011, vol. 42, pp. 1544–1557.

    Article  Google Scholar 

  5. Kulakov, M., Poole, W.J., and Militzer, M., The effect of the initial microstructure on recrystallization and austenite formation in a DP600 steel, Metall. Mater. Trans. A, 2013, vol. 44, pp. 3564–3576.

    Article  Google Scholar 

  6. Caballero, F.G., Capdevila, C., and García de Andrés, C., An attempt to establish the variables that most directly influence the austenite formation process in steels, ISIJ Int., 2003, vol. 43, pp. 726–735.

    Article  Google Scholar 

  7. Martínez-de-Guerenu, A., Arizti, F., and Gutiérrez, I., Recovery during annealing in a cold rolled low carbon steel. Part II: Modeling the kinetics, Acta Mater., 2004, vol. 52, no. 12, pp. 3665–3670.

    Article  Google Scholar 

  8. Senuma, T., Present status and future prospects of simulation models for predicting the microstructure of cold rolled steel sheets, ISIJ Int., 2012, vol. 52, no. 4, pp. 679–687.

    Article  Google Scholar 

  9. Zhu, B. and Militzer, M., 3D phase field modeling of recrystallization in low-carbon steel, Mater. Sci. Eng., A, 2012, vol. 20, pp. 1–17.

    Article  Google Scholar 

  10. Kulakov, M., Poole, W.J., and Militzer, M., A microstructure evolution model for intercritical annealing of a low-carbon dual-phase steel, ISIJ Int., 2014, vol. 54, no. 11, pp. 2627–2636.

    Article  Google Scholar 

  11. Zhu, B. and Militzer, M., Phase-field modeling for intercritical annealing of a dual-phase steel, Metal. Mater. Trans. A, 2015, vol. 46, no. 3, pp. 1073–1084.

    Article  Google Scholar 

  12. Thermo-Calc software. http://www.thermocalc.com.

  13. Martínez-de-Guerenu, A., Arizti, F., Díaz-Fuentes, M., and Gutiérrez, I., Recovery during annealing in a cold rolled low carbon steel. Part I: Kinetics and microstructural characterization, Acta Mater., 2004, vol. 52, pp. 3657–3664.

    Article  Google Scholar 

  14. Vasilyev, A., Rudskoy A., Kolbasnikov, N., Sokolov, S., and Sokolov, D., Physical and mathematical modeling of austenite microstructure evolution processes developing in line-pipe steels under hot rolling, Mater. Sci. Forum, 2012, vols. 706–709, pp. 2836–2841.

    Article  Google Scholar 

  15. Vasilyev, A.A., Sokolov, S.F., Kolbasnikov, N.G., and Sokolov, D.F., Effect of alloying on the self-diffusion activation energy in γ-iron, Phys. Solid State, 2011, vol. 53, no. 11, pp. 2194–2200.

    Article  Google Scholar 

  16. Vasilyev, A.A., Sokolov, D.F., Kolbasnikov, N.G., and Sokolov, S.F., Modeling of the γ→α transformation in steels, Phys. Solid State, 2012, vol. 54, no. 8, pp. 1669–1680.

    Article  Google Scholar 

  17. Ogoltsov, A., Sokolov, D., Sokolov, S., and Vasilyev, A., Computer model for simulation of steels hot rolling on mill 2000 of Severstal, Mater. Sci. Forum, 2016, vol. 854, pp. 183–189.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Vasilyev.

Additional information

Original Russian Text © A.A. Vasilyev, N.G. Kolbasnikov, A.I. Rudskoy, D.F. Sokolov, S.F. Sokolov, 2017, published in Stal’, 2017, No. 10, pp. 48–56.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasilyev, A.A., Kolbasnikov, N.G., Rudskoy, A.I. et al. Kinetics of Structure Formation in the Heating of Cold-Rolled Automotive Steel Sheet. Steel Transl. 47, 830–838 (2017). https://doi.org/10.3103/S0967091217120130

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0967091217120130

Keywords

Navigation