Steel in Translation

, Volume 47, Issue 12, pp 830–838 | Cite as

Kinetics of Structure Formation in the Heating of Cold-Rolled Automotive Steel Sheet

  • A. A. Vasilyev
  • N. G. Kolbasnikov
  • A. I. Rudskoy
  • D. F. Sokolov
  • S. F. Sokolov


The softening kinetics associated with recovery and recrystallization is investigated, along with the kinetics of phase transformation (austenitization) on heating cold-rolled autompotive steel sheet. The kinetics of softening in isothermal holding is studied using the Gleeble 3800 system for 12 steels, and the phase transformation in continuous heating at constantrate is studied for 6 steels of different strength class, with different chemical composition. Considerable slowing of the steel’s recovery and recrystallization is observed with increase in the Mn and Ti content in the ferrite solid solution. The grain size of the recrystallized ferrite hardly depends on the annealing temperature. The results may be used in developing a quantitative integral model to describe the complex microstructural evolution of cold-rolled steel sheet on annealing in industrial production.


cold rolling steel sheet automotive steel annealing softening recovery recrystallization austenitization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Huang, J., Poole, W.J., and Militzer, M., Austenite formation during intercritical annealing, Metall. Mater. Trans. A, 2004, vol. 35, pp. 3364–3375.Google Scholar
  2. 2.
    Asadi Asadabad, M., Goodarzi, M., and Kheirandish, S., Kinetics of austenite formation in dual phase steels, ISIJ Int., 2008, vol. 48, no. 9, pp. 1251–1255.CrossRefGoogle Scholar
  3. 3.
    Ogawa, T., Maruyama, N., Sugiura, N., and Yoshinaga, N., Incomplete recrystallization and subsequent microstructural evolution during intercritical annealing in cold-rolled low carbon steels, ISIJ Int., 2010, vol. 50, pp. 469–475.CrossRefGoogle Scholar
  4. 4.
    Azizi-Alizamini, H., Militzer, M., and Poole, W.J., Austenite formation in plain low-carbon steels, Metall. Mater. Trans. A, 2011, vol. 42, pp. 1544–1557.CrossRefGoogle Scholar
  5. 5.
    Kulakov, M., Poole, W.J., and Militzer, M., The effect of the initial microstructure on recrystallization and austenite formation in a DP600 steel, Metall. Mater. Trans. A, 2013, vol. 44, pp. 3564–3576.CrossRefGoogle Scholar
  6. 6.
    Caballero, F.G., Capdevila, C., and García de Andrés, C., An attempt to establish the variables that most directly influence the austenite formation process in steels, ISIJ Int., 2003, vol. 43, pp. 726–735.CrossRefGoogle Scholar
  7. 7.
    Martínez-de-Guerenu, A., Arizti, F., and Gutiérrez, I., Recovery during annealing in a cold rolled low carbon steel. Part II: Modeling the kinetics, Acta Mater., 2004, vol. 52, no. 12, pp. 3665–3670.CrossRefGoogle Scholar
  8. 8.
    Senuma, T., Present status and future prospects of simulation models for predicting the microstructure of cold rolled steel sheets, ISIJ Int., 2012, vol. 52, no. 4, pp. 679–687.CrossRefGoogle Scholar
  9. 9.
    Zhu, B. and Militzer, M., 3D phase field modeling of recrystallization in low-carbon steel, Mater. Sci. Eng., A, 2012, vol. 20, pp. 1–17.CrossRefGoogle Scholar
  10. 10.
    Kulakov, M., Poole, W.J., and Militzer, M., A microstructure evolution model for intercritical annealing of a low-carbon dual-phase steel, ISIJ Int., 2014, vol. 54, no. 11, pp. 2627–2636.CrossRefGoogle Scholar
  11. 11.
    Zhu, B. and Militzer, M., Phase-field modeling for intercritical annealing of a dual-phase steel, Metal. Mater. Trans. A, 2015, vol. 46, no. 3, pp. 1073–1084.CrossRefGoogle Scholar
  12. 12.
    Thermo-Calc software. Scholar
  13. 13.
    Martínez-de-Guerenu, A., Arizti, F., Díaz-Fuentes, M., and Gutiérrez, I., Recovery during annealing in a cold rolled low carbon steel. Part I: Kinetics and microstructural characterization, Acta Mater., 2004, vol. 52, pp. 3657–3664.CrossRefGoogle Scholar
  14. 14.
    Vasilyev, A., Rudskoy A., Kolbasnikov, N., Sokolov, S., and Sokolov, D., Physical and mathematical modeling of austenite microstructure evolution processes developing in line-pipe steels under hot rolling, Mater. Sci. Forum, 2012, vols. 706–709, pp. 2836–2841.CrossRefGoogle Scholar
  15. 15.
    Vasilyev, A.A., Sokolov, S.F., Kolbasnikov, N.G., and Sokolov, D.F., Effect of alloying on the self-diffusion activation energy in γ-iron, Phys. Solid State, 2011, vol. 53, no. 11, pp. 2194–2200.CrossRefGoogle Scholar
  16. 16.
    Vasilyev, A.A., Sokolov, D.F., Kolbasnikov, N.G., and Sokolov, S.F., Modeling of the γ→α transformation in steels, Phys. Solid State, 2012, vol. 54, no. 8, pp. 1669–1680.CrossRefGoogle Scholar
  17. 17.
    Ogoltsov, A., Sokolov, D., Sokolov, S., and Vasilyev, A., Computer model for simulation of steels hot rolling on mill 2000 of Severstal, Mater. Sci. Forum, 2016, vol. 854, pp. 183–189.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • A. A. Vasilyev
    • 1
  • N. G. Kolbasnikov
    • 1
  • A. I. Rudskoy
    • 1
  • D. F. Sokolov
    • 1
  • S. F. Sokolov
    • 1
  1. 1.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations