Skip to main content
Log in

Thermodynamic Modeling of Metal Desulfurization with Boron-Containing Slags of the CaO–SiO2–MgO–Al2O3–B2O3 System

  • Published:
Steel in Translation Aims and scope

Abstract

In thermodynamic modeling of the desulfurization of steel by CaO–SiO2–MgO–Al2O3–B2O3 slag on the basis of HSC 6.12 Chemistry software (Outokumpu), the influence of the temperature (1500–1700°C), the slag basicity (2–5), and the B2O3 content (1–4%)1 on the desulfurization is analyzed. It is found that the sulfur content is reduced with increase in the temperature from 1500 to 1700°C, within the given range of slag basicity. At 1600°C, the sulfur content in the metal is 0.0052% for slag of basicity 2; at 1650°C, by contrast, its content is 0.0048%. Increase in slag basicity from 2 to 5 improves the desulfurization, which increases from 80.7 to 98.7% at 1600°C. If the B2O3 content in the slag rises, desulfurization is impaired. At 1600°C, the sulfur content in the metal may be reduced to 0.0052 and 0.0098% when using slag of basicity 2 with 1 and 4% B2O3, respectively; in the same conditions but with slag of basicity 5, the corresponding values are 0.00036 and 0.00088%, respectively. Note that desulfurization is better for slag without B2O3. According to thermodynamic modeling, metal with 0.0039 and 0.00019% S is obtained at 1600°C when using slag of basicity 2 and 5, respectively, that contains no B2O3. The results obtained by thermodynamic modeling for the desulfurization of metal by CaO–SiO2–MgO–Al2O3–B2O3 slag of basicity 2–5 in the range 1500–1700°C are consistent with experimental data and may be used in improving the desulfurization of steel by slag that contains boron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Yavoiskii, V.I., Kryakovskii, Yu.V., Grigor’ev, V.P., Nechkin, Yu.M., Kravchenko, V.F., and Borodin, D.I., Metallurgiya stali. Uchebnik dlya vuzov (Metallurgy of Steel: Manual for Higher Education Institutions), Moscow: Metallurgiya, 1983.

    Google Scholar 

  2. Chuiko, N.M. and Chuiko, A.N., Teoriya i tekhnologiya elektroplavki stali (Theory and Technology of Electric Steel Melting), Kiev–Donetsk: Golovnoe Izd., 1983.

    Google Scholar 

  3. Bigeev, A.M. and Bigeev, V.A., Metallurgiya stali. Teoriya i tekhnologiya plavki stali. Uchebnik dlya vuzov (Metallurgy of Steel. Theory and Technology of Steel Melting. Manual for Higher Education Institutions), Magnitogorsk: Magnitogorsk. Gos. Tekh. Univ., 2000.

    Google Scholar 

  4. Kablukovskii, A.F., Proizvodstvo elektrostali i ferrosplavov (Production of Electric Steel and Ferroalloys), Moscow: Akademkniga, 2003.

    Google Scholar 

  5. Dyudkin, D.A. and Kisilenko, V.V., Proizvodstvo stali. Vnepechnaya metallurgiya stali (Steel Production. Outof-Furnace Metallurgy of Steel), Moscow: Teplotekhnik, 2010, vol.3.

  6. Novikov, V.A., Tsarev, V.A., Novikov, S.V., Afanas’ev, S.Yu., and Batov, Yu.M., Thermodynamic and kinetic peculiarities of desulfurization, Russ. Metall. (Engl. Transl.), 2013, vol. 2013, no. 6, pp. 420–424.

    Article  Google Scholar 

  7. Sokolov, G.A., Vnepechnoe rafinirovanie stali (Out-of-Furnace Refining of Steel), Moscow: Metallurgiya, 1977.

    Google Scholar 

  8. Wang, H., Zhang, T., Zhu, H., Li, G., Yan, Y., and Wang, J., Effect of B2O3 on melting temperature, viscosity and desulfurization capacity of CaO-based refining flux, ISIJ Int., 2011, vol. 51, no. 5, pp. 702–706.

    Article  Google Scholar 

  9. Tursunov, N.K., Semin, A.E., and Sanokulov, E.A., Research of dephosphorization and desulfurization processes in smelting of 20GL steel in an induction crucible furnace with further processing in a ladle using rare earth metals, Chern. Met., 2017, no. 1, pp. 33–40.

    Google Scholar 

  10. Akberdin, A.A., Kim, A.S., and Esenzhulov, A.B., Theoretical evaluation and industrial verification of smelting technology for refined ferrochromium using low-melting fluxes, Trudy mezhdunarodnoi nauchnoi konferentsii posvyashchennoi 110-letiyu so dnya rozhdeniya akademika A.M. Samarina “Fiziko-khimicheskie osnovy metallurgicheskikh protsessov” (Proc. Int. Sci. Conf. Dedicated to the 110th Anniversary of Academician A.M. Samarin “Physical and Chemical Founda-tions of Metallurgical Processes”), Moscow: Inst. Metall. Materialoved., Ross. Akad. Nauk, 2012, p.69.

    Google Scholar 

  11. Vozchikov, A.P., Demidov, K.N., Smirnov, L.A., et al., Development of boron-containing high-magnesia fluxes of rational composition for steelmaking and experimental evaluation of their physico-chemical and refining properties, Chern. Metall., Byull. Nauchno-Tekh. Ekon. Inf., 2014, no. 11, pp. 35–38.

    Google Scholar 

  12. Zhu, Z.X., Li, G.R., Wang, H.M., Dai, Q.X., Li, B., J. Univ. Sci. Technol. Beijing, 2006, vol. 28, p.725.

    Google Scholar 

  13. Zharmenov, A.A., Mukanov, D.M., Akberdin, A.A., et al., Complex processing of mineral raw materials in Kazakhstan, in Bor v protsessakh podgotovki i metallurgicheskoi pererabotki zhelezorudnogo syr’ya (Use of Boron in the Ppreparation and Metallurgical Processing of Iron Ore), Astana: Foliant, 2003, vol. 3, pp. 3–87.

    Google Scholar 

  14. Kim, G.H. and Sohn, I., Role of B2O3 on the viscosity and structure in the CaO–Al2O3–Na2O-based system, Metall. Mater. Trans. B, 2014, vol. 45, no. 1, pp. 86–95.

    Article  Google Scholar 

  15. Kim, Y. and Morita, K., Relationship between molten oxide structure and thermal conductivity in the CaO–SiO2–B2O3 system, ISIJ Int., 2014, vol. 54, no. 9, pp. 2077–2083.

    Article  Google Scholar 

  16. Sychev, A.V., Salina, V.A., Babenko, A.A., and Zhuchkov, V.I., Distribution of boron between oxide slag and steel, Steel Transl., 2017, vol. 47, no. 2, pp. 105–107.

    Article  Google Scholar 

  17. Wan, Y. and Chen, W., Effect of boron content on the microstructure and magnetic properties of non-oriented electrical steels, J. Wuhan Univ. Technol. Mater. Sci. Ed., 2015, vol. 30, no. 3, pp. 574–579.

    Article  Google Scholar 

  18. Velichko, O.G., Kamkina, L.V., Manidin, V.S., Isava, L.E., and Chervonii, I.F., The role of boron in processes of obtaining of steel of high quality and the problem of its determination, Teor. Prakt. Metall., 2015, nos. 1–2, pp. 104–108.

    Google Scholar 

  19. Bogdanov, N.A., Sychkov, A.B., Derevyanchenko, I.V., Kucherenko, O.L., Oleinik, A.A., Parusov, V.V., Starov, R.V., and Nesterenko, A.M., Development and introduction of a technology for making boron-bearing steels, Metallurgist, 1999, vol. 43, nos. 1–2, pp. 71–75.

    Article  Google Scholar 

  20. Zhuchkov, V.I., Sychev, A.V., Akberdin, A.A., Trofimov, E.A., Salina, V.A., and Babenko, A.A., Research and improvement of the process of obtaining of complex boron-containing ferroalloys, Materialy XVI mezhdunarodnoi konferentsii “Sovremennye problemy elektrometallurgii stali” (Proc. XVI Int. Conf. “Modern Problems of Electrometallurgy of Steel”), Chelyabinsk: Yuzh.-Ural. Gos. Univ., 2015, part. 2, pp. 191–196.

    Google Scholar 

  21. Zhuchkov, V.I., Leont’ev, L.I., Babenko, A.A., Sychev, A.V., and Akberdin, A.A., Advanced directions of using boron-containing materials in ferrous metallurgy, Trudy XX Mendeleevskogo s”ezda po obshchei i prikladnoi khimii (Proc. XX Mendeleev Congr. on General and Applied Chemistry), Yekaterinburg: Ural. Otd., Ross. Akad. Nauk, 2016, vol. 3, pp.73.

    Google Scholar 

  22. Roine, A., Outokumpu HSC Chemistry for Windows, Chemical Reaction and Equilibrium Software with Extensive Thermochemical Database, Version 5.1, Pori: Outokumpu Res. Inf. Serv., 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Salina.

Additional information

Original Russian Text © V.A. Salina, A.V. Sychev, V.I. Zhuchkov, A.A. Babenko, 2017, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Chernaya Metallurgiya, 2017, No. 12, pp. 955–959.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salina, V.A., Sychev, A.V., Zhuchkov, V.I. et al. Thermodynamic Modeling of Metal Desulfurization with Boron-Containing Slags of the CaO–SiO2–MgO–Al2O3–B2O3 System. Steel Transl. 47, 768–771 (2017). https://doi.org/10.3103/S0967091217120117

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0967091217120117

Keywords

Navigation