Steel in Translation

, Volume 47, Issue 12, pp 788–796 | Cite as

Surface Hardening of Hard Tungsten-Carbide Alloys: A Review

  • T. N. Oskolkova
  • A. M. Glezer


Russian and non-Russian research on the surface hardening of hard tungsten-carbide alloys to improve the wear resistance is reviewed. There is great scope for improving the wear resistance and durability of hard-alloy components by surface strengthening on the basis of various coatings, including coatings with 100-nm structural components. On hard tungsten-carbide alloys, the most common coatings consist of titanium carbide TiC and nitride TiN, characterized by high lattice binding energy and high melting point. If such coatings are applied to hard-alloy tools, the frictional coefficient is reduced by a factor of 1.5–2.0 when cutting steel. The use of a TiN + ZrN ion-plasma coating reduces the frictional coefficient by a factor of 5.9. At present, multilayer coatings are widely employed. The most widespread are TiN + TiC and Al2O3 + TiC coatings. Their wear is proportional to the coating thickness. These multilayer coatings still leave room for improvement in the wear resistance of hard alloys. In Russia, the potential of hard alloys with a strength gradient from a ductile and high-strength core to a wear-resistant surface is being explored. At the Research Institute of Refractory Metals and Hard Alloys, a method has been developed for producing alloys with variable cobalt content over the thickness of the cutting insert. That permits change in alloy composition from VK20 to VK2 over the sample thickness. Correspondingly, the wear resistance of the insert’s working section is equivalent to that of VK2 alloy, while the base is able to withstand considerable flexural stress. Recently, cutting tools with a diamond coating on hard alloys have been adopted in practice. To increase the durability of hard-alloy VK inserts, strengthening based on concentrated energy fluxes may be employed. Examples include treatment of hard-alloy surfaces by γ quanta, ion beams, and laser beams, electroexplosive alloying, and electrospark strengthening.


hard-alloy tools surface hardening concentrated energy fluxes hard coatings wear resistance hard tungsten-carbide alloys microhardness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Panov, V.S., Chuvilin, A.M., and Fal’kovskii, V.A., Tekhnologiya i svoistva spechennykh tverdykh splavov i izdelii iz nikh (Technology and Properties of Sintered Hard Alloys and their Products), Moscow: Mosk. Inst. Stali Splavov, 2004.Google Scholar
  2. 2.
    Khizhnyak, V.G., Dolgikh, V.Yu., and Korol’, V.I., Structure and some properties of diffusion coatings of titanium, vanadium, chromium and boron on hard alloys, Vestn. Kiev. Politekh. Inst., 2002, no. 1, pp. 74–79.Google Scholar
  3. 3.
    Liu, S., Hao, J., Zuo, L., and Song, J., Dynamic XRD phase analysis of rare earth-boronization for WC–Co cemented carbides, J. Chin. Rare Earth Soc., 2002, vol. 20, no. 1, pp. 26–29.Google Scholar
  4. 4.
    Liu, S., Hao, J., Chu, L., and Song, J., Mechanism of hard-facing alloy‘s WC-Co boronizing with rare-earth metals, Rare Metal. Mater. Eng., 2003, vol. 32, no. 4, pp. 305–308.Google Scholar
  5. 5.
    Liu, S., Hao, J., Chu, L., and Song, J., Phase analysis of cemented carbide WC-Co boronised with yttrium, J. Chin. Rare Earths Soc., 2002, vol. 40, no. 4, pp. 287–290.Google Scholar
  6. 6.
    Vereshchaka, A.S. and Vereshchaka, A.A., Increasing effectiveness of the tool by controlling composition, structure and properties of coatings, Uprochnyayushchie Tekhnol. Pokrytiya, 2005, no. 9, pp. 9–18.Google Scholar
  7. 7.
    Tabakov, V.P., Formirovanie iznosostoikikh ionno-plazmennykh pokrytii rezhushchego instrumenta (Formation of Wear-Resistant Ion-Plasma Coatings for Cutting Tools), Moscow: Mashinostroenie, 2008.Google Scholar
  8. 8.
    Vereshchaka, A.S., Some methodological principles of creating functional coatings for cutting tools, in Sovremennye tekhnologii v mashinostroenii (Modern technologies in mechanical engineering), Kharkov: Khar’kovsk. Politekh.o Inst., 2007, pp. 210–231.Google Scholar
  9. 9.
    Oskolkova, T.N., Wear resistant coating on hard alloy, Appl. Mech. Mater., 2015, vol. 788, pp. 281–285.CrossRefGoogle Scholar
  10. 10.
    Oskolkova, T.N., Tungsten carbide hard alloy with wear-resistant coating, Izv. Samar. Nauch. Tsentra, Ross. Akad. Nauk, 2013, vol. 15, no. 4 (2), pp. 473–475.Google Scholar
  11. 11.
    Panteleev, I.B., Vladimirova, M.D., Shavrova, O.I., and Ordan’yan, S.S., Hard alloys on the base of tungsten carbide and complicated titanium (tungsten) carbonitride, Tsvetn. Met., 2004, no. 8, pp. 100–105.Google Scholar
  12. 12.
    Chekhovoi, A.N., Prokopova, T.I., and Bychkov, V.M., Quasiamorphous metal-ceramic tool of the new generation, Konstr. Kompoz. Mater., 1999, no. 3, pp. 13–19.Google Scholar
  13. 13.
    Andryushin, S.G., Kasatkin, A.V., and Kuchumova, V.M., Mechanical features of adhesive compounds of buffer thin-film coatings with carbide supporting plate, Materialovedenie, 2003, no. 6, pp. 43–51.Google Scholar
  14. 14.
    Kruglov, A.I., Senchilo, I.A., and Fomichev, A.M., Development of structure and composition of modified layer of working surfaces of metal-ceramic carbide cutting tools, Instrum. Tekhnol., 2004, nos. 17–18, pp. 100–103.Google Scholar
  15. 15.
    Chatfield, C., Lindstrom, J., Sestrand, M., and Colleen, M., RF Patent 2010888, 1994.Google Scholar
  16. 16.
    Larsson, A. and Zackrisson, J., RF Patent 1531187, 2005.Google Scholar
  17. 17.
    Fadeev, V.S., Chigrin, Yu.N., Mokritskii, B.Ya., and Konakov, A.V., RF Patent 2211879, Byull. Izobret., 2003, no.25.Google Scholar
  18. 18.
    Okada, Y., Moriguchi, H., and Ikegaya, A., US Patent 6756111, Byull. Izobret., 2003, no.25.Google Scholar
  19. 19.
    Lengauer, W., Ucakar, V., Dreyer, K., Kassel, D., and Daub, H., DE Patent 10342364, 2005.Google Scholar
  20. 20.
    Anikin, V.N., Zolotareva, N.N., Kazantsev, N.I., Tambovtseva, A.A., Pel’ts, A.D., Ermolaev, A.V., Fadeev, V.S., and Blinkov, I.V., RF Patent 2302925, Byull. Izobret., 2007, no.20.Google Scholar
  21. 21.
    Oskolkova, T.N., RF Patent 2401720, Byull. Izobret., 2010, no.29.Google Scholar
  22. 22.
    Oskolkova, T.N., A new technology for producing carbide alloys with gradient structure, IOP Conf. Ser.: Mater. Sci. Eng., 2015, vol. 91, pp. 012019.CrossRefGoogle Scholar
  23. 23.
    Langford, J.V., Jr., and Delviche, R., RF Patent 2167262, Byull. Izobret., 2001, no.14.Google Scholar
  24. 24.
    Katsuhito, Y., Junichi, S., and Tetsuo, N., US Patent 6358624, 2000.Google Scholar
  25. 25.
    Fal’kovskii, V.A., Klyachko, L.I., and Smirnov, V.A., Nanokristallicheskie i ul’tradispersnye poroshki vol’frama, karbida vol’frama i volframokobal’tovye tverdye splavy na ikh osnove (Nanocrystalline and Ultradisperse Powders of Tungsten, Tungsten Carbide, and Tungsten-Cobalt Hard Alloys), Moscow: Vseross. Nauchno-Issled. Proektn. Inst. Tugoplavkikh Met. Tverd. Splavov, 2004.Google Scholar
  26. 26.
    Andrievskii, R.A., Superhard nanostructured materials based on refractory compounds, Zh. Funkts. Mater., 2007, vol. 1, no. 4, pp. 129–133.Google Scholar
  27. 27.
    Panov, V.S., Nanotechnology in the production of hard alloys: a review, Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall., 2007, no. 2, pp. 63–68.Google Scholar
  28. 28.
    Bock, A. and Zeiler, B., Production and characterization of ultrafine WC powders, Int. J. Refract. Met. Hard Mater., 2002, vol. 20, pp. 23–30.CrossRefGoogle Scholar
  29. 29.
    Blinkov, I.V. and Manukhin, A.V., Nanodispersnye i granulirovannye materialy, poluchennye v impul’snoi plazme (Nanodispersed and Granulated Materials Obtained in Pulsed Plasma), Moscow: Mosk. Inst. Stali Splavov, 2004.Google Scholar
  30. 30.
    Amosov, A.P., Borovinskaya, I.P., Merzhanov, A.G., and Sychev, A.E., Self-propagating high-temperature synthesis as the advanced technology for nanopowders production, Konstr. Kompoz. Mater., 2006, no. 4, pp. 17–19.Google Scholar
  31. 31.
    Klyachko, L.I., Fine and ultrafine hard metals at Plansee, Met. Powder Rep., 2001, vol. 56, no. 11, pp.24.CrossRefGoogle Scholar
  32. 32.
    Liu, Y.Y., Yu, J., Huang, H., Xu, B.H., Liu, X.L., Gao, Y., and Dong, X.L., Synthesis and tribological of electroless Ni–P–WC nanocomposite coatings, Surf. Coat. Technol., 2007, vol. 201, nos. 16–17, pp. 7246–7251.CrossRefGoogle Scholar
  33. 33.
    Samokhin, A.V., Alekseev, N.V., and Tsvetkov, Yu.V., Plasma-assisted processes for manufacturing nanosized powder materials, High Energy Chem., 2006, vol. 40, no. 2, pp. 93–97.CrossRefGoogle Scholar
  34. 34.
    Ban, Z.-G. and Shaw, L.L., Synthesis and processing of nanostructured WC–Co materials, J. Mater. Sci., 2002, vol. 37, no. 16, pp. 3397–3403.CrossRefGoogle Scholar
  35. 35.
    Korotaev, A.D., Moshkov, V.Yu., Ovchinnikov, S.V., Pinzhin, Yu.P., Savostikov, V.M., and Tyumentsev, A.N., Nanostructured and nanocomposite superhard coatings, Fiz. Mezomekh., 2005, vol. 8, no. 3, pp. 103–116.Google Scholar
  36. 36.
    Veprek, S., Veprek-Hejman, M.G.J., Kavrankova, P., and Prohazka, J., Different approaches to superhard coatings and nanocomposite, Thin Solid Films, 2005, vol. 476, pp. 1–29.CrossRefGoogle Scholar
  37. 37.
    Musil, J., Hruby, H., and Zeeman, P., Hard and superhard nanocomposite Al–Co–N films prepared by magnetron sputtering, Surf. Coat. Technol., 1999, vol. 155, pp. 32–37.CrossRefGoogle Scholar
  38. 38.
    Holubár, P., Jílek, M., and Šíma, M., Nanocomposite nc-TiAlSiN and nc-TiN–BN coatings: their applications on substrates made of cemented carbide and results of cutting tests, Surf. Coat. Technol., 1999, vols. 120–121, pp. 184–188.CrossRefGoogle Scholar
  39. 39.
    Vaz, F., Rebouta, L., Goudeau, Ph., et al., Residual stress in sputtered Ti1-xSixNy films, Thin Solid Films, 2002, vol. 402, pp. 195–202.CrossRefGoogle Scholar
  40. 40.
    Jedrzejonski, P., Klemberg-Sapieha, J.E., and Martinu, L., Relationship between the mechanical properties and the microstructure of nanocomposite TiN/SiN1.3 coatings prepared by low temperature plasma enhanced chemical vapor deposition, Thin Solid Films, 2003, vol. 426, pp. 150–159.CrossRefGoogle Scholar
  41. 41.
    Mayrhofer, P.H., Kunc, F., Musil, J., and Mitterer, C., A comparative study on reactive and non-reactive unbalanced magnetron sputter deposition of TiN coatings, Thin Solid Films, 2002, vol. 415, pp. 151–159.CrossRefGoogle Scholar
  42. 42.
    Pinakhin, I.A. and Kopchenkov, V.G., Increase of working capacity of metal-cutting tool made of hard alloys by pulse laser treatment, Vestn. Sev. Kavk. Gos. Tekh. Univ., 2010, no. 4, pp.90.Google Scholar
  43. 43.
    Grigor’yants, A.G. and Yares’ko, S.I., Investigation of stressed state of carbide phase of VK6 hard alloy under pulsed laser treatment, Sverkhtverd. Mater., 1991, no. 1, pp. 49–56.Google Scholar
  44. 44.
    Yares’ko, S.I. and Kobeleva, T.K., Change in fine structure of carbide phase of solid alloys of WC–Co system under laser treatment, Sverkhtverd. Mater., 1996, no. 1, pp. 52–57.Google Scholar
  45. 45.
    Iskhakova, G.A. and Sindeev, V.I., Study of high-speed deformation of tungsten carbide, Sverkhtverd. Mater., 1983, no. 5, pp. 49–54.Google Scholar
  46. 46.
    Gureev, D.M., Laletin, A.P., Chulkin, V.N., and Yares’ko, S.I., On the state of fine structure of carbides in VK8 hard alloy in pulsed laser treatment zone, Fiz. Khim. Obrab. Mater., 1987, no. 6, pp. 36–40.Google Scholar
  47. 47.
    Nesterenko, V.P., Aref’ev, K.P., Kondratyuk, A.A., Merkulov, V.I., and Surkov, A.S., Electric strength of polyoxide structures formed on the surface of composite materials under heating after preliminary laser treatment, Fiz. Khim. Obrab. Mater., 2002, no. 5, pp. 9–13.Google Scholar
  48. 48.
    Ramkumar, J., Aravindan, S., Malhotra, S.K., and Krishnamurthy, R., Enhancing the metallurgical properties of WC insert (K-20) cutting tool through microwave treatment, Mater. Lett., 2002, vol. 53, no. 3, pp. 200–204.CrossRefGoogle Scholar
  49. 49.
    Ivanov, A.N., Korshunov, A.B., and Yakovtsova, M.M., Effect of high-speed heat treatment on fine structure of tungsten carbide in a VK8 shard alloy, Trudy 6-go mezhgosudarstvennogo seminara “Strukturnye osnovy modifikatsii materialov metodami netraditsionnykh tekhnologii” (Proc. Sixth Int. Conf. “Structural Fundamentals of Material Modification by Non-Traditional Technologies), Obninsk, 2001, p.21.Google Scholar
  50. 50.
    Poleshchenko, K.N., Povoroznyuk, S.N., Boboi, A.O., and Ivanov, Yu.F., Changes in tribological properties of metal-ceramic hard alloys by ion-plasma and ion-beam treatment, Fiz. Khim. Obrab. Mater., 2002, no. 2, pp. 5–8.Google Scholar
  51. 51.
    Boboi, A.O., Poleshchenko, K.N., Povoroznyuk, S.N., et al., Complex modification of carbide cutting tools using ion beams of high specific power, in Materialy i tekhnologii 21-go veka (Materials and Technologies of the 21st Century), Penza: Privolzhsk. Dom Znanii, 2001, part 1, pp. 87–89.Google Scholar
  52. 52.
    Remnev, G.E., Semukhin, B.S., Struts, V.K., et al., Investigation of structure of hard alloy based on tungsten carbides and titanium subjected to powerful-pulsed ion irradiation, Fiz. Khim. Obrab. Mater., 1998, no. 5, pp. 19–22.Google Scholar
  53. 53.
    Ivanov, A.N., Khmelevskaya, V.S., Antoshina, I.A., and Korshunov, A.B., Structural changes in VK8 hard alloy under ion irradiation, Perspekt. Mater., 2003, no. 1, pp. 89–92.Google Scholar
  54. 54.
    Tarbokov, V.A., Remnev, G.E., and Kuznetsov, P.V., Modification of carbide plates based on tungsten carbide by powerful-pulsed ion beam, Fiz. Khim. Obrab. Mater., 2004, no. 3, pp. 11–17.Google Scholar
  55. 55.
    Petrenko, P.V., Gritskevich, A.L., Kulish, N.P., Mel’nikova, N.A., and Rozhkovskii, A.N., Influence of radiation defects on structural-phase transformations in WC–Co alloys, Trudy 6-go mezhgosudarstvennogo seminara “Strukturnye osnovy modifikatsii materialov metodami netraditsionnykh tekhnologii” (Proc. Sixth Int. Conf. “Structural Fundamentals of Material Modification by Non-Traditional Technologies), Obninsk, 2001, pp.85.Google Scholar
  56. 56.
    Petrenko, P.V., Grabovskii, Yu.E., Gritskevich, A.L., and Kulish, N.P., Structural-phase transformations in WC–Co hard alloys irradiated with a low-flux electron beam, Fiz. Khim. Obrab. Mater., 2003, no. 3, pp. 29–39.Google Scholar
  57. 57.
    Mamontov, A.P., Chernov, I.P., and Ryabchikov, S.Ya., RF Patent 2092282, 1997.Google Scholar
  58. 58.
    Korshunov, A.B., Shamaev, B.V., Shorin, A.M., Shesterikov, S.A., Pikunov, D.V., Shchurkova, V.V., and Danilov, S.L., RF Patent 93057445, 1996.Google Scholar
  59. 59.
    Timoshnikov, Yu.A., Klopotov, A.A, and Ivanov, Yu.F., Change in structural-phase state of VK8 alloy under the influence of gamma-ray flux, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 2001, no. 4, pp. 40–43.Google Scholar
  60. 60.
    Puchkareva, L.N., Poleshchenko, K.P., and Poletika, M.F., RF Patent 1707997, 1997.Google Scholar
  61. 61.
    Oskolkova, T.N., Budovskikh, E.A, and Goryushkin, V.F., Features of structure formation of the surface layer in the course of electroexplosive alloying tungsten carbide hard alloy, Russ. J. Non-Ferrous Met., 2014, vol. 55, no. 2, pp. 196–200.CrossRefGoogle Scholar
  62. 62.
    Oskolkova, T.N. and Budovskikh, E.A., Pulse plasma treatment of the surface of alloy VK10KS, Met. Sci. Heat Treat., 2012, vol. 53, no. 11, pp. 608–610.CrossRefGoogle Scholar
  63. 63.
    Oskolkova, T.N. and Budovskikh, E.A., Electric explosion alloying of the surface of hard alloy VK10KS with titanium and silicon carbide, Met. Sci. Heat Treat., 2013, vol. 55, no. 1–2, pp. 96–99.CrossRefGoogle Scholar
  64. 64.
    Oskolkova, T.N. and Budovskikh, E.A., Change in structure of the surface of VK10KS alloy after electroexplosive treatment with boron, Tekhnol. Met., 2012, no. 3, pp. 13–18.Google Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  1. 1.Siberian State Industrial UniversityNovokuznetskRussia
  2. 2.Bardin Central Research Institute of Ferrous MetallurgyMoscowRussia

Personalised recommendations