Steel in Translation

, Volume 47, Issue 1, pp 21–25 | Cite as

Formation of metallic phase on reducing-gas injection in multicomponent oxide melt. Part 2. Density and surface properties

  • A. S. Vusikhis
  • L. I. Leont’ev
  • V. P. Chentsov
  • D. Z. Kudinov
  • E. N. Selivanov
Article
  • 18 Downloads

Abstract

The density and surface tension of melts of ferronickel (0–100% Ni) and oxidized nickel ore are measured by the sessile-drop method, as well as the interface tension at their boundary in the temperature range 1550–1750°C. The composition of the nickel ore is as follows: 14.8 wt % Fetot, 7.1 wt % FeO, 13.2 wt % Fe2O3, 1.4 wt % CaO, 16.2 wt % MgO, 54.5 wt % SiO2, 4.8 wt % Al2O3, 1.5 wt % NiO, and 1.2 wt % Cr2O3. In the given temperature range, the density of the alloys varies from 7700 to 6900 kg/m3; the surface tension from 1770 to 1570 mJ/m2; the interface tension from 1650 to 1450 mJ/m2, the density of the oxide melt from 2250 to 1750 kg/m3; and its surface tension from 310 to 290 mJ/m2. The results are in good agreement with literature data. Functional relationships of the density, surface tension, and interphase tension with the melt temperature and composition are derived. The dependence of the alloy density on the temperature and nickel content corresponds to a first-order equation. The temperature dependence of the surface tension and interphase tension is similar, whereas the dependence on the nickel content corresponds to a second-order equation. The density and surface tension of the oxide melt depend linearly on the temperature. The results may be used to describe the formation of metallic phase when carbon monoxide is bubbled into oxide melt.

Keywords

metallic phase oxide melt surface properties interface tension 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vertman, A.A. and Samarin, A.M., Metody issledovaniya svoistv metallicheskikh rasplavov (Properties Analysis of Metal Melts), Moscow: Nauka, 1969.Google Scholar
  2. 2.
    Popel’ S.I., Shchergin L.M., and Tsarevskii B.V. Temperature dependence of the density and surface tension of iron-nickel melts, Zh. Fiz. Khim., 1969, vol. 43, no. 9, pp. 2365–2368.Google Scholar
  3. 3.
    Nizhenko, V.I. and Floka, L.I., Poverkhnostnoe natyazhenie zhidkikh metallov i splavov (odno-i dvukhkomponentnye sistemy): spravochnik (Surface Tension of Liquid Metals and Alloys (One-and Two-Component Systems): Handbook), Moscow: Metallurgiya, 1981.Google Scholar
  4. 4.
    Turkdogan, E.T., Physical Chemistry of High-Temperature Processes, New York: Academic, 1980.Google Scholar
  5. 5.
    Eremenko, V.N., Ivanov, M.I., Lukashenko, G.M., Martsenyuk, P.S., Nizhenko, V.I., and Khilya, G.P., Fizicheskaya khimiya neorganicheskikh materialov. Tom 2. Poverkhnostnoe natyazhenie i termodinamika metallicheskikh rasplavov (Physical Chemistry of Inorganic Materials, Vol. 2: Surface Tension and Thermodynamics of Metal Melts), Kiev: Naukova Dumka, 1988.Google Scholar
  6. 6.
    Ostrovskii, O.I., Grigoryan, V.A., and Vishkarev, A.F., Svoistva metallicheskikh rasplavov (Properties of Metallic Melts), Moscow: Metallurgiya, 1988.Google Scholar
  7. 7.
    Popel’, S.I., Poverkhnostnye yavleniya v rasplavakh (Surface Phenomena in Melts), Moscow: Metallurgiya, 1994.Google Scholar
  8. 8.
    Vanyukov, A.V. and Zaitsev, V.Ya., Shlaki i shteiny tsvetnoi metallurgii (Slags and Mattes in Non-Ferrous Metallurgy), Moscow: Metallurgiya, 1969.Google Scholar
  9. 9.
    Schlackenatlas/Herausgegeben vom Verein Deutscher Eisenhuttenleute, Düsseldorf: Verlag Stahleisen, 1981.Google Scholar
  10. 10.
    Denisov, V.M., Belousova, N.V., Istomin, S.A., Bakhvalov, S.G., and Pastukhov, E.A., Stroenie i svoistva rasplavlennykh oksidov (Structure and Properties of the Molten Oxides), Yekaterinburg: Ural. Otd., Ross. Akad. Nauk, 1999.Google Scholar
  11. 11.
    Nesterenko, S.V., Ovchinnikov, N.A., and Khomenko, V.M., Fizicheskie svoistva metallurgicheskikh shlakov. Spravochnoe izdanie (Physical Properties of Metallurgical Slags: Handbook), Donetsk: Donechina, 2001.Google Scholar
  12. 12.
    Arsent’ev, PP., Yakovlev, V.V., and Krasheninnikov, M.G., Fiziko-khimicheskie metody issledovaniya metallurgicheskikh protsessov (Physical and Chemical Analysis of Metallurgical Processes), Moscow: Metallurgiya, 1988.Google Scholar
  13. 13.
    Tavadze, F.N., Khantadze, D.V., and Onikashvili, E.G., Calculation of liquid surface tension by the shape of lying drop, Zh. Fiz. Khim., 1970, vol. 44, nos. 11–12, pp. 2910–2912.Google Scholar
  14. 14.
    Chentsov, V.P., Shevchenko, V.G., Mozgowoi, A.G., and Pokrasin, M.A., Density and surface tension of heavy liquid-metal coolants: gallium and indium, Inorg. Mater.: Appl. Res., 2011, vol. 2, no. 5, pp. 468–473.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • A. S. Vusikhis
    • 1
  • L. I. Leont’ev
    • 2
    • 3
    • 4
  • V. P. Chentsov
    • 1
  • D. Z. Kudinov
    • 1
  • E. N. Selivanov
    • 1
  1. 1.Institute of Metallurgy, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  2. 2.Presidium of the Russian Academy of SciencesMoscowRussia
  3. 3.Baikov Institute of Metallurgy and Materials ScienceRussian Academy of SciencesMoscowRussia
  4. 4.Moscow Institute of Steel and AlloysMoscowRussia

Personalised recommendations