Steel in Translation

, Volume 47, Issue 1, pp 26–31 | Cite as

Metallurgy under pressure

Article
  • 38 Downloads

Abstract

The development of iron and steel production is briefly reviewed. Metallurgy under gas pressure appeared at the end of the twentieth century. Even at this early stage, some significant benefits of metallurgy under pressure over traditional metallurgy and vacuum metallurgy have been established, such as fourfold increase in yield point with reduced consumption or elimination of some expensive alloying elements (Ni, Mo, Co, W, etc.); the possibility of alloying with nontraditional elements (Ca, Zn, Pb, etc.); low environmental impact; and stable development. Metallurgy under pressure may be expected to give rise to breakthroughs in the production of high-quality and special metal. Of the currently existing methods, the most promising is the use of a large steel-smelting bath.

Keywords

metallurgy under pressure high-nitrogen steel nitrogen nontraditional steel large steel-smelting baths compression electroslag remelting vacuum metallurgy traditional metallurgy electroslag remelting under pressure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mezenin, N.A., Povest’ o masterakh zheleznogo dela (The Story about the Iron Forge Masters), Moscow: Znanie, 1973.Google Scholar
  2. 2.
    Rashev, Ts.V., Dobivane na legirani stomani: monografiya (Production of Alloyed Steel: Monograph), Sofia: Bulg. Acad. Sci., 1978.Google Scholar
  3. 3.
    Rashev, Ts.V., Proizvodstvo legirovannoi stali (Production of Alloyed Steel), Moscow: Metallurgiya, 1981.Google Scholar
  4. 4.
    Rashev, Ts.V., Vysokoazotistye stali. Metallurgiya pod davleniem (High-Carbon Steels. Metallurgy under Pressure), Sofia: Prof. Marin Drinov, 1995.Google Scholar
  5. 5.
    Rashev, Ts., High Nitrogen Steels. Metallurgy under Pressure: Monograph, Sofia: Bulg. Acad. Sci., 1995.Google Scholar
  6. 6.
    Rashev, Ts., Basic problems in steelmaking and development of high nitrogen steels (HNS). Las Vegas, Thermec, 2000, no. 12, pp. 15–20.Google Scholar
  7. 7.
    Andreev, Ch. and Rashev, Ts., Chromium-manganese stainless steels with nitrogen content up to 2.10%, Mater. Sci. Forum, 1999, vols. 318–320, pp. 255–260.CrossRefGoogle Scholar
  8. 8.
    Dimov, I., Rashev, Ts., Ivanov, R., and Andreev, Ch., Nickel-free chromium-manganese stainless steels, Mater. simpoziuma po lit’yu protivodavleniem (Proc. Symp. on Cast Counter Pressure), Varna, 1973, pp. 90–102.Google Scholar
  9. 9.
    Rashev, Ts., On the perspectives of the steel-making processes in the XXIst century, J. Bulg. Acad. Sci., 1995, pp. 18–26Google Scholar
  10. 10.
    Rashev, Ts., High nitrogen steels and metallurgy under pressure, HNS 2002, Trans. Indian. Inst. Met., Part A, 2002, vol. 55, no. 4, pp. 201–211.Google Scholar
  11. 11.
    Rashev, Ts., Development of laboratory and industrial installation for one stage production of HNS, Mater. Manuf. Process., 2003, vol. 19, no. 1, pp. 31–40.CrossRefGoogle Scholar
  12. 12.
    Rashev, Ts., Metallurgy under pressure—prospects, Proc. Annual Meeting CMS, Beijing, 2001, pp. 541–549.Google Scholar
  13. 13.
    Rashev, Ts., Bulgarian high nitrogen steels and their application for mold casting, Proc. ARABCHST’97, Egypt, 1997, pp. 37–46.Google Scholar
  14. 14.
    Rashev, Ts., Anlagen zur Erzengung von hochstickstoffhaltigen, in Stahl gus unter Gasdruck, Neue Hutte, Leipzig, 1991, pp. 401–406.Google Scholar
  15. 15.
    Rashev, Ts., Production d’aciers a haute tener en azote souspression gazeuse, Rev. Metall. (Les Ulis, Fr.), 1993, no. 2, pp. 227–234.Google Scholar
  16. 16.
    Rashev, Ts., Andreev, Ch., and Jekova, L., Problems of high nitrogen steel development, The 10-th Int. Conf. on High Nitrogen Steels, HNS 2009, July 6–8, 2009, Moscow, 2009, pp. 221–232.Google Scholar
  17. 17.
    Rashev, Ts. and Semerdjiev, S., Machinen fur die industrielle Herstellung inter gosdruck von Formgussteilen aus hochstickstafthaltigen stahlen, in Ergebnisse der Werkstoff Foischang, Vol. 4: Stickstofflegierte Stahle, Speidel, M.I. and Uggwitzer, P.V., Eds., Zurich, 1991, pp. 229–250.Google Scholar
  18. 18.
    Rashev, Ts. and Penchev, H., Biologically stimulating economically alloyed high nitrogen stainless steels in medicine and stomatology, Int. Congr. on Hign Nitrogen Steels ‘95, Kyoto, pp. 251–257.Google Scholar
  19. 19.
    Andreev, Ch. and Rashev, Ts., Structure and properties of austenitic steels with over 2.15% nitrogen, The 4th Int. Conf. HNS’95, September 27–29, 1995, Kyoto, 1995, p.69.Google Scholar
  20. 20.
    Jekova, L. and Rashev, Ts., Nickel free manganese stainless high nitrogen steels, Int. Conf. HNS’04, September 19–22, 2004, Ostend, 2004, pp. 144–149.Google Scholar
  21. 21.
    Mudali, K., Baldev, R., Rashev, Ts., Speidel, M., and Foct, J., High nitrogen steels, in Manufacturing, Properties, and Applications: Monograph, New Delhi: Narosa, 2006.Google Scholar
  22. 22.
    Stein, G., Menzel, J., and Dörr, H., Industrial manufacture of massively nitrogen-alloyed steels, Proc. Int. Conf. on High Nitrogen Steels, HNS ‘88, Foct, J. and Hendry, A., Eds., London: Inst. Met., 1989, pp. 32–38.Google Scholar
  23. 23.
    Berns, H., Trojahn, W., and Zoch, H.W., On the benefits of nitrogen in bearing steels, Proc. 3d Ascometal Bearing Steels Symp., Arles, 2000, pp. 119–123.Google Scholar
  24. 24.
    Stein, G. and Diehl, V., High nitrogen alloyed steels on the move-fields of application, Proc. Int. Conf. on High Nitrogen Steels, HNS’2004, Ostend, 2004, pp. 421–426.Google Scholar
  25. 25.
    Gavrilyuk, V.G. and Berns, H., High Nitrogen Steels: Monograph, Berlin: Springer-Verlag, 1999.CrossRefGoogle Scholar
  26. 26.
    Magdowski, R. and Speidel, M., High strength austenitic material, fully resistant to stress corrosion cracking in nuclear environments, NACE Int. Corrosion Conf., CORROSION’99, Huston, TX: NACE Int., 1999, no. 445Google Scholar
  27. 27.
    Wohlfromm, H., Ugowitzer, P.J., and Speidel, M.O., Panacea provides the answer to Ni allergy, PMSpecial feature, Metal Powder Rep., 1998, vol. 53, no. 9, pp. 48–52.CrossRefGoogle Scholar
  28. 28.
    Hochovter, G., Ugowitzer, P., Magdowski, R., and Speidel, M.P., Mechanical and corrosion properties of a new superduplex grade with increased nitrogen content, Proc. Conf. Euromaterial‘99, Munich, 1999.Google Scholar
  29. 29.
    Proc. 3d Int. Conf. on High Nitrogen Steels, HNS’93, September 14–16, 1993 Gavriljuk, V.G., Ed., Kiev, 1993, parts 1–2.Google Scholar
  30. 30.
    Proc. 1th Int. Conf. on High Nitrogen Steels, HNS’88, Foct, J. and Henry, H., Eds., London: Inst. Met., 1988.Google Scholar
  31. 31.
    Proc. Int. Conf. on High Nitrogen Steels, HNS’89, October 1–3, 1989, Rashev, Ts., and Andreev, Ch., Eds., Varna, 1989, vols. 1–2.Google Scholar
  32. 32.
    Proc. 3d Int. Conf. on High Nitrogen Steels, HNS’93, September 14–16, 1993, Gavriljuk, V.G., Ed., Kiev, 1993.Google Scholar
  33. 33.
    Proc. Int. Conf. on High Nitrogen Steels, HNS’95, Tokyo: Int. Iron Steel Inst. Jpn., 1996, vol. 36, no.7.Google Scholar
  34. 34.
    Proc. 5th Int. Conf. on High Nitrogen Steels, HNS’98, Hanninen, H., Ed., Helsinki, 1998.Google Scholar
  35. 35.
    HNS’2002, Madras, India, Trans. Indian Inst. Met., A, 2002, vol. 55, no.4.Google Scholar
  36. 36.
    Proc. Int. Conf. on High Nitrogen Steels, HNS’2003, Speidel, M.O., Eds., Zurich: Inst. Metall., 2003.Google Scholar
  37. 37.
    Proc. 7th Int. Conf. on High Nitrogen Steels, HNS’2004, Akdut, N. and Foct, J., Eds., Ostend: GRIPS Media, 2004.Google Scholar
  38. 38.
    Proc. Int. Conf. on High Nitrogen Steels, HNS’2006, Dong, H. and Speidel, M.O., Eds., Beijing: Metall. Ind., 2006.Google Scholar
  39. 39.
    Proc. 8th Int. Conf. on High Nitrogen Steels, HNS’2009, Swiazyn, A.G., Ed., Moscow, 2009.Google Scholar
  40. 40.
    Proc. Int. Conf. on High Nitrogen Steels, HNS’2012, Mudali, K. and Baldev, R., Eds., Madras, 2012.Google Scholar
  41. 41.
    Proc. 11th Int. Conf. on High Nitrogen Steels, HNS’2014, Munich, 2014.Google Scholar
  42. 42.
    INCTECO Company. http://inteco.at/.Google Scholar
  43. 43.
    Paton, B.E. and Medovar, B.I., Elektroshlakovye pechi (Electroslag Furnaces), Kiev: Naukova Dumka, 1976.Google Scholar
  44. 44.
    Medovar, B.I., Medovar, L.B., and Sachko, V.I., Electroslag technology in 21st, Adv. Spec. Elektrometall., 2001, no. 1 (62), pp. 12–17.Google Scholar
  45. 45.
    Foct, J., Future development and application of nitrogenbearing steels and stainless steels, High Nitrogen Steels and Stainless Steels, Mudali, K., Ed., New Delhi: Narosa, 2006, pp. 256–264.Google Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  1. 1.OOO MetkoSofiaBulgaria
  2. 2.Institute of Physical Metallurgy, Construction, and TechnologyBulgarian Academy of SciencesSofiaBulgaria
  3. 3.OOO Pavel VenkovPernikBulgaria

Personalised recommendations