Steel in Translation

, Volume 47, Issue 1, pp 60–64 | Cite as

Thermodynamic analysis of the reduction of pipe steel

  • S. N. Paderin
  • G. V. Serov
  • A. A. Komissarov
  • S. M. Tikhonov
  • D. V. Kuznetsov


In thermodynamic calculations, the activity of oxygen in equilibrium with Al, Mn, and Ce is determined for four melts of pipe steel. Pure gaseous oxygen under pressure is adopted as the standard state of oxygen dissolved in liquid metal. The actual (above-equilibrium) activity of oxygen is calculated on the basis of electrochemical measurements in liquid steel by oxygen sensors. For the melts, the difference between the actual and equilibrium chemical potentials, which may be regarded as the factor that drives reduction, is 14–20 kJ/mol. The conditions for microalloying of the melt with cerium are assessed.


pipe steel molten steel reduction oxygen activity standard Gibbs energy chemical potential oxygen sensors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zaitsev, A.I., Rodionova, I.G., Mal’tsev, V.V., et al., The sources of the corrosive non-metallic inclusions in steel and their prevention, Metally, 2005, no. 2, pp. 3–11.Google Scholar
  2. 2.
    Grigorovich, K.V., Shibaeva, T.V., and Arsenkin, A.M., Effect of a pipe-steel killing technology on the composition and number of nonmetallic inclusions, Russ. Metall. (Engl. Transl.), 2011, vol. 2011, no. 9, pp. 927–933.CrossRefGoogle Scholar
  3. 3.
    Manovani, M.C., Moraes, L.R., Silva, K.L., et al., Interaction between molten steel and different kinds of MgO based tundish linings, Ironmaking Steelmaking, 2013, vol. 40, no. 5, pp. 319–325.CrossRefGoogle Scholar
  4. 4.
    Movenko, D.A., Kotel’nikov, G.I., Pavlov, A.V., and Bytsenko, O.A., Effect of the conditions of REM microalloying of steel on the corrosion activity of nonmetallic inclusions, Russ. Metall. (Engl. Transl.), 2015, vol. 2015, no. 11, pp. 880–885.CrossRefGoogle Scholar
  5. 5.
    Kazachekov, E.A., Raschety po teorii metallurgicheskikh protsessov (Calculations within the Theory of Metallurgical Processes), Moscow: Metallurgiya, 1988.Google Scholar
  6. 6.
    Kaufman, K., Coupled phase diagrams and thermodynamic data for transition metal binary system, Calphad, 1978, vol. 2, no. 2, pp. 117–145.CrossRefGoogle Scholar
  7. 7.
    Mogutnov, B.M., Tomilin, I.A., and Shvartsman, L.A., Termodinamika splavov zheleza (Thermodynamics of Iron Alloys), Moscow: Metallurgiya, 1984.Google Scholar
  8. 8.
    Shil’nikov, E.V. and Paderin, S.N., Thermodynamics of oxygen solutions in liquid metals, Trudy XIV mezhdunarod. kongressa staleplavil’shchikov i proizvoditelei metalla (Proc. XIV Int. Congr. of Steel-and Ironmakers), Moscow, 2016, pp. 521–327.Google Scholar
  9. 9.
    Shil’nikov, E.V. and Paderin, S.N., Thermodynamics of oxygen solutions in liquid metals: Ni, Co, Fe and Mn, Elektrometallurgiya, 2013, no. 6, pp. 3–8.Google Scholar
  10. 10.
    Paderin, S.N., Serov, G.V., Shil’nikov, E.V., and Alpatov, A.V., Elektrokhimicheskii kontrol’ i raschety staleplavil’nykh protsessov (Electrochemical Control and Calculations of Steelmaking Processes), Moscow: Mosk. Inst. Stali Splavov, 2011.Google Scholar
  11. 11.
    Prigogine, I. and Kondepudi, D., Modern Thermodynamics: From Heat Engines to Dissipative Structures, New York: Wiley, 1998.Google Scholar
  12. 12.
    Turkdogan, E.T., Physical Chemistry of High Temperature Technology, New York: Academic, 1980.Google Scholar
  13. 13.
    Paderin, S.N. and Shil’nikov, E.V., Thermodynamic pattern of oxygen solubility in liquid metals (Ni, Co, Fe, Mn, Cr) and formation of oxygen-containing solutions and its alloys, Elektrometallurgiya, 2015, no. 11, pp. 32–42.Google Scholar
  14. 14.
    Diagrammy sostoyaniya dvoinykh metallicheskikh sistem: spravochnik (Phase Diagrams of Binary Metal Systems), Lyakishev, N.P., Ed., Moscow: Mashinostroenie, 1996.Google Scholar
  15. 15.
    Paderin, S.N. and Filippov, V.V., Teoriya i raschety metallurgicheskikh sistem i protsessov (Theory and Calculations of Metallurgical Systems and Processes), Moscow: Mosk. Inst. Stali Splavov, 2002.Google Scholar
  16. 16.
    Bannykh, O.A., Budberg, P.B., and Alisova, S.P., Diagrammy sostoyaniya dvoinykh i mnogokomponentnykh sistem na osnove zheleza: spravochnik (Phase Diagrams of Iron-Containing Binary and Multicomponent Systems: Handbook), Moscow: Metallurgiya, 1986.Google Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • S. N. Paderin
    • 1
  • G. V. Serov
    • 1
  • A. A. Komissarov
    • 1
  • S. M. Tikhonov
    • 1
  • D. V. Kuznetsov
    • 1
  1. 1.Moscow Institute of Steel and AlloysMoscowRussia

Personalised recommendations