Skip to main content
Log in

Thermodynamic analysis of the reduction of pipe steel

  • Published:
Steel in Translation Aims and scope

Abstract

In thermodynamic calculations, the activity of oxygen in equilibrium with Al, Mn, and Ce is determined for four melts of pipe steel. Pure gaseous oxygen under pressure is adopted as the standard state of oxygen dissolved in liquid metal. The actual (above-equilibrium) activity of oxygen is calculated on the basis of electrochemical measurements in liquid steel by oxygen sensors. For the melts, the difference between the actual and equilibrium chemical potentials, which may be regarded as the factor that drives reduction, is 14–20 kJ/mol. The conditions for microalloying of the melt with cerium are assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zaitsev, A.I., Rodionova, I.G., Mal’tsev, V.V., et al., The sources of the corrosive non-metallic inclusions in steel and their prevention, Metally, 2005, no. 2, pp. 3–11.

    Google Scholar 

  2. Grigorovich, K.V., Shibaeva, T.V., and Arsenkin, A.M., Effect of a pipe-steel killing technology on the composition and number of nonmetallic inclusions, Russ. Metall. (Engl. Transl.), 2011, vol. 2011, no. 9, pp. 927–933.

    Article  Google Scholar 

  3. Manovani, M.C., Moraes, L.R., Silva, K.L., et al., Interaction between molten steel and different kinds of MgO based tundish linings, Ironmaking Steelmaking, 2013, vol. 40, no. 5, pp. 319–325.

    Article  Google Scholar 

  4. Movenko, D.A., Kotel’nikov, G.I., Pavlov, A.V., and Bytsenko, O.A., Effect of the conditions of REM microalloying of steel on the corrosion activity of nonmetallic inclusions, Russ. Metall. (Engl. Transl.), 2015, vol. 2015, no. 11, pp. 880–885.

    Article  Google Scholar 

  5. Kazachekov, E.A., Raschety po teorii metallurgicheskikh protsessov (Calculations within the Theory of Metallurgical Processes), Moscow: Metallurgiya, 1988.

    Google Scholar 

  6. Kaufman, K., Coupled phase diagrams and thermodynamic data for transition metal binary system, Calphad, 1978, vol. 2, no. 2, pp. 117–145.

    Article  Google Scholar 

  7. Mogutnov, B.M., Tomilin, I.A., and Shvartsman, L.A., Termodinamika splavov zheleza (Thermodynamics of Iron Alloys), Moscow: Metallurgiya, 1984.

    Google Scholar 

  8. Shil’nikov, E.V. and Paderin, S.N., Thermodynamics of oxygen solutions in liquid metals, Trudy XIV mezhdunarod. kongressa staleplavil’shchikov i proizvoditelei metalla (Proc. XIV Int. Congr. of Steel-and Ironmakers), Moscow, 2016, pp. 521–327.

    Google Scholar 

  9. Shil’nikov, E.V. and Paderin, S.N., Thermodynamics of oxygen solutions in liquid metals: Ni, Co, Fe and Mn, Elektrometallurgiya, 2013, no. 6, pp. 3–8.

    Google Scholar 

  10. Paderin, S.N., Serov, G.V., Shil’nikov, E.V., and Alpatov, A.V., Elektrokhimicheskii kontrol’ i raschety staleplavil’nykh protsessov (Electrochemical Control and Calculations of Steelmaking Processes), Moscow: Mosk. Inst. Stali Splavov, 2011.

    Google Scholar 

  11. Prigogine, I. and Kondepudi, D., Modern Thermodynamics: From Heat Engines to Dissipative Structures, New York: Wiley, 1998.

    Google Scholar 

  12. Turkdogan, E.T., Physical Chemistry of High Temperature Technology, New York: Academic, 1980.

    Google Scholar 

  13. Paderin, S.N. and Shil’nikov, E.V., Thermodynamic pattern of oxygen solubility in liquid metals (Ni, Co, Fe, Mn, Cr) and formation of oxygen-containing solutions and its alloys, Elektrometallurgiya, 2015, no. 11, pp. 32–42.

    Google Scholar 

  14. Diagrammy sostoyaniya dvoinykh metallicheskikh sistem: spravochnik (Phase Diagrams of Binary Metal Systems), Lyakishev, N.P., Ed., Moscow: Mashinostroenie, 1996.

  15. Paderin, S.N. and Filippov, V.V., Teoriya i raschety metallurgicheskikh sistem i protsessov (Theory and Calculations of Metallurgical Systems and Processes), Moscow: Mosk. Inst. Stali Splavov, 2002.

    Google Scholar 

  16. Bannykh, O.A., Budberg, P.B., and Alisova, S.P., Diagrammy sostoyaniya dvoinykh i mnogokomponentnykh sistem na osnove zheleza: spravochnik (Phase Diagrams of Iron-Containing Binary and Multicomponent Systems: Handbook), Moscow: Metallurgiya, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Serov.

Additional information

Original Russian Text © S.N. Paderin, G.V. Serov, A.A. Komissarov, S.M. Tikhonov, D.V. Kuznetsov, 2017, published in Stal’, 2017, No. 1, pp. 26–29.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paderin, S.N., Serov, G.V., Komissarov, A.A. et al. Thermodynamic analysis of the reduction of pipe steel. Steel Transl. 47, 60–64 (2017). https://doi.org/10.3103/S0967091217010120

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0967091217010120

Keywords

Navigation