Skip to main content
Log in

Diversity of non-ribosomal peptide synthetases genes in terrestrial streptomycetes

  • Experimental Works
  • Published:
Molecular Genetics, Microbiology and Virology Aims and scope Submit manuscript

Abstract

Biotechnological potential of secondary metabolites from microorganisms are receiving much attention for the discovery of novel bioactive compounds. The present study was designed to assess the genetic potential of rhizosphere streptomycete communities by amplifying adenylation (A) domains of non-ribosomal peptide synthetase (NRPS) genes. Using degenerate PCR and the sequencing of cloned products, NRPSs were detected in all 26 isolates. Based on the BlastX analysis, most of the NRPS fragments showed below 70% identity to their closest relatives. Additionally, NRPS A domain sequences were constituted established chemistry based clades in the phylogenetic tree. Different A domains were determined in the sequences, but in some cases their substrate specifity failed to be predicted. This means that these domains can recognize novel amino acids as substrate. For the first time, an investigation was performed on the substrate specifity of NRPS A domains of rhizosphere streptomycetes and their phylogenetic relationship. Genomic screening studies such as the one presented here for NRPS genes; contribute to on-going efforts to characterize the potential of plant-associated microbiota for secondary metabolite biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pathom-aree, W., Stach, J.E.M., Ward, A.C., et al., Extremophiles, 2006, vol. 10, pp. 181–189.

    Article  PubMed  CAS  Google Scholar 

  2. Zhao, J., Yang, N., and Zeng, R., Extremophiles, 2008, vol. 12, pp. 97–105.

    Article  PubMed  CAS  Google Scholar 

  3. Ehrenreich, I.M., Waterbury, J.B., and Webb, E.A., Appl. Environ. Microbiol., 2005, vol. 71, pp. 7401–7413.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Barrios-Llerena, M.E., Burja, A.M., and Wright, P.C., J. Ind. Microbiol. Biotechnol., 2007, vol. 34, pp. 443–456.

    Article  PubMed  CAS  Google Scholar 

  5. Zhou, K., Zhang, X., Zhang, F., and Li, Z., Microb. Ecol., 2011, vol. 62, pp. 644–654.

    Article  PubMed  Google Scholar 

  6. Miller, K.I., Qing, C., Sze, D.M.Y., and Neilan, B.A., PLoS ONE, 2012, vol. 7, pp. 1–12.

    Google Scholar 

  7. Finking, R. and Marahiel, M.A., Annu. Rev. Microbiol., 2004, vol. 58, pp. 453–488.

    Article  PubMed  CAS  Google Scholar 

  8. Schwarzer, D. and Marahiel, M.A., Naturwissenschaften, 2001, vol. 88, pp. 93–101.

    Article  PubMed  CAS  Google Scholar 

  9. Sauer, M., Lu, P., Sangari, R., et al., Mycol. Res., 2002, vol. 106, pp. 460–470.

    Article  CAS  Google Scholar 

  10. Burns, B.P., Seifert, A., Goh, F., et al., FEMS Microbiol. Letts., 2005, vol. 243, pp. 293–301.

    Article  CAS  Google Scholar 

  11. Fischbach, M.A. and Walsh, C.T., Chem. Rev., 2006, vol. 106, pp. 3468–3496.

    Article  PubMed  CAS  Google Scholar 

  12. Yılmaz, E. İ., Yavuz, M., and Kızıl, M., World J. Microb. Biot., 2008, vol. 24, pp. 1461–1470.

    Article  Google Scholar 

  13. Keiser, T., Bibb, M.J., Buttner, M.J., et al., Proc. Pract. Streptomyces Genetics, Norwich, UK, 2000.

    Google Scholar 

  14. Ayuso-Sacido, A. and Genilloud, O., Microb. Ecol., 2005, vol. 49, pp. 10–24.

    Article  PubMed  CAS  Google Scholar 

  15. Rausch, C., Weber, T., Kohlbacher, O., et al., Nucleic Acids Res., 2005, vol. 33, pp. 5799–5808.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Rötting, M., Medema, M.H., Blin, K., et al., Nucleic Acids Res., 2011, vol. 39 (Web Server issue), pp. W362–W367.

    Article  Google Scholar 

  17. Saitou, N. and Nei, M., Mol. Biol. Evol., 1987, vol. 4, pp. 406–425.

    PubMed  CAS  Google Scholar 

  18. Tamura, K., Peterson, D., Peterson, N., et al., Mol. Biol. Evol., 2011, vol. 28, pp. 2731–2739.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Nei, M. and Kumar, S., Molecular Evolution and Phylogenetics, New York, 2000.

    Google Scholar 

  20. Felsenstein, J., Evolution, 1985, vol. 39, pp. 783–791.

    Article  Google Scholar 

  21. Riedlinger, J., Schrey, S.D., Tarkka, M.T., et al., Appl. Environ. Microbiol., 2006, vol. 72, pp. 3550–3557.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Schulz, D., Nachtigall, N., Riedlinger, J., et al., J. Antibiot., 2009, vol. 62, pp. 513–518.

    Article  PubMed  CAS  Google Scholar 

  23. Nachtigall, J., Schulz, D., Beil, W., et al., J. Antibiot., 2010, vol. 63, pp. 397–399.

    Article  PubMed  CAS  Google Scholar 

  24. Nikolouli, K. and Mossialos, D., Biotechnol. Lett., 2012, vol. 34, pp. 1393–1403.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Özakın or E. İnce.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özakın, S., Porsuk, İ., Acer, İ. et al. Diversity of non-ribosomal peptide synthetases genes in terrestrial streptomycetes. Mol. Genet. Microbiol. Virol. 29, 144–153 (2014). https://doi.org/10.3103/S0891416814030069

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0891416814030069

Keywords

Navigation