Skip to main content
Log in

Use of multiple locus variable number tandem repeats analysis in systematics of the causative agent of brucellosis

  • Experimental Works
  • Published:
Molecular Genetics, Microbiology and Virology Aims and scope Submit manuscript

Abstract

Methods that allow one to carry out molecular genetic differentiation of strains of the same species are acquiring increasing importance in the modern system of struggle with brucellosis. The multiple locus variable number tandem repeats analysis (MLVA) method was selected for molecular genetic differentiation up until the strain level and simultaneous establishment of genetic relationship of the studied strains. The aim of the study was typing (by the MLVA method) of strains of three pathogenic to humans Brucella species with the analysis of stability of selected loci, identification of differences between them and conformity of the data, obtained by this method and by phenotypic method of Brucella differentiation, for use of the MLVA method in systematics of the causative agent of brucellosis. Materials and methods. Twenty-six Brucella strains, which are reference (n = 15); vaccine (n = 2); field strains of three pathogenic Brucella species, including B. melitensis (n = 3), B. abortus (n = 2), and B. suis (n = 2); and isolates (n = 2) of unknown taxonomic position were typed by the MLVA method with nine pairs of primers for known variable loci for the Brucella genome. Analysis of the stability of selected loci, their differences according to the Hunter-Gaston discrimination index (HGDI), and conformity of the data obtained with phenotypic methods of identification was conducted. Results. The MLVA method confirms the results of phenotypic methods of identification and the stability of selected loci in most reference and vaccine strains with a high variability HGDI index (0.9969) for all loci. A dendrogram based on the data of the MLVA typing allowed us to allocate the Brucella strains into related clusters according to their taxonomic species and biovar position and development of 25 genotypes. The B. melitensis strains generated a cluster related to the B. melitensis 63/9 biovar 2 reference strain. Australian Brucella 83-4 and Brucella 83-6 isolates from mouse like rodents generated a cluster distant from other Brucella strains. Conclusions. MLVA is a promising method of Brucella strain differentiation with known and undetermined taxonomic status for their systematics and creation of the MLVA genotype catalogue, which will favor a qualitative improvement of the system of epidemiological surveillance for this infection in Russia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vershilova, P.A., Brutsellez (Brucellosis), Moscow: Meditsina, 1972.

    Google Scholar 

  2. Zheludkov, M.M., Tsirel’son, L.E., Kulakov, Yu.K., et al., Epidemiol. Vaktsinoprofil., 2009, no. 6, pp. 23–28.

  3. Kulakov, Yu.K., Erdenebaatar, J., Tsirel’son, L.E., et al., Zh. Mikrobiol. Epidemiol. Immunobiol., 2010, no. 3, pp. 17–22.

  4. Kulakov, Yu.K., Erdenebaatar, J., Zheludkov, M.M., et al., Mol. Genet., 2011, no. 2, pp. 8–12.

  5. Al Dahouk, S., Le Fleche, P., Nockler, K., et al., J. Microbiol. Methods, 2007, vol. 69, pp. 137–145.

    Article  PubMed  Google Scholar 

  6. Alton, G.G., Jones, L.M., Angus, R.D., et al., Techniques for the Brucellosis Laboratory, Paris, 1988.

  7. Bikandi, J., San, Millan R., Rementeria, A., et al., Bioinformatics, 2004, vol. 20, pp. 798–799.

    Article  PubMed  CAS  Google Scholar 

  8. Boom, R., Sol, C.J., Salimans, M.M., et al., J. Clin. Microbiol., 1990, vol. 28, pp. 495–503.

    PubMed  CAS  Google Scholar 

  9. Bricker, B.J. and Ewalt, D.R., Bio. Med. Central Microbiol., 2005, vol. 5, p. 37.

    Google Scholar 

  10. Ficht, T., Future Microbiol., 2010, vol. 6, pp. 859–866.

    Article  Google Scholar 

  11. Halling, S.M., Peterson-Burch, B.D., Bricker, B.J., et al., J. Bacteriol., 2005, vol. 187, pp. 2715–2726.

    Article  PubMed  CAS  Google Scholar 

  12. Her, M., Kang, S.I., Cho, D.H., et al., Bio. Med. Centr. Microbiol., 2009, vol. 29, no. 9, p. 230.

    Google Scholar 

  13. Her, M., Kang, S.I., Kim, J.W., et al., J. Microbiol. Biotechnol., 2010, vol. 20, pp. 1750–1755.

    PubMed  Google Scholar 

  14. Hunter, P.R. and Gaston, M.A., J. Clin. Microbiol., 1988, vol. 26, pp. 2465–2466.

    PubMed  CAS  Google Scholar 

  15. Jiang, H., Mao, L.L., Zhao, H.Y., et al., Trans. R. Soc. Trop. Med. Hyg., 2010, vol. 104, no. 12, pp. 796–800.

    Article  PubMed  CAS  Google Scholar 

  16. Kulakov, Y.K., Zheludkov, M.M., and Sclyarov, O.D., Vaccine, 2010, vol. 28, suppl. 5, pp. 41–45.

    Article  Google Scholar 

  17. Le Fleche, P., Jacques, I., Grayon, M., et al., Bio. Med. Centr. Microbiol., 2006, vol. 6, p. 9.

    Google Scholar 

  18. Maquart, M., Le Fleche P., Foster G., et al., Bio. Med. Central Microbiol., 2009, vol. 20, no. 9, p. 145.

    Google Scholar 

  19. Marianelli, C., Graziani, C., Santangelo, C., et al., J. Clin. Microbiol., 2007, vol. 45, pp. 2923–2928.

    Article  PubMed  CAS  Google Scholar 

  20. Microorganisms Tandem Repeats Database. http://minisatellites.u-psud.fr

  21. Nockler, K., Moves, R., Cepeda, D., et al., J. Clin. Microbiol., 2009, vol. 47, no. 10, pp. 3147–3155.

    Article  PubMed  Google Scholar 

  22. Rees, R.K., Graves, M., Caton, N., et al., J. Microbiol. Met., 2009, vol. 78, no. 1, pp. 66–70.

    Article  CAS  Google Scholar 

  23. Tiller, R.V., De, B.K., Boshra, M., et al., J. Clin. Microbiol., 2009, vol. 47, no. 7, pp. 2226–2231.

    Article  PubMed  Google Scholar 

  24. Tiller, R.V., Gee, J.E., Frace, M.A., et al., Appl. Environ. Microbiol., 2010, vol. 76, no. 17, pp. 5837–5845.

    Article  PubMed  CAS  Google Scholar 

  25. Valdezate, S., Navarro, A., Villalon, P., et al., J. Clin. Microbiol., 2010, vol. 48, no. 8, pp. 2734–2740.

    Article  PubMed  CAS  Google Scholar 

  26. Van Belkum, A., Tassios, P.T., Dijkshoorn, L., et al., Clin. Microbiol. Infect., 2007, vol. 13, suppl. 3, pp. 1–46.

    Article  Google Scholar 

  27. Whatmore, A.M., Shanksier, S.J., Perrett, L.L., et al., J. Clin. Microbiol., 2006, vol. 44, pp. 1982–1993.

    Article  PubMed  CAS  Google Scholar 

  28. Whatmore, A.M., Infect. Genet. Evol., 2009, vol. 9, pp. 1168–1184.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © Yu.K. Kulakov, D.A. Kovalev, E.N. Misetova, S.I. Golovneva, L.V. Lyapustina, M.M. Zheludkov, 2012, published in Molekulyarnaya Genetika, Mikrobiologiya i Virusologiya, 2012, No. 2, pp. 30–34.

About this article

Cite this article

Kulakov, Y.K., Kovalev, D.A., Misetova, E.N. et al. Use of multiple locus variable number tandem repeats analysis in systematics of the causative agent of brucellosis. Mol. Genet. Microbiol. Virol. 27, 79–84 (2012). https://doi.org/10.3103/S089141681202005X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S089141681202005X

Keywords

Navigation