Extremely High Energy (E > 1020 eV) Cosmic Rays: Potential Sources

Abstract

One of the unsolved problems of cosmic ray physics is determining the nature and sources of ultrahigh energy cosmic rays (UHECRs, E > 1018 eV). The high degree of isotropy of the observed UHECR intensity caused mainly by the deviations of the UHECR trajectories in extragalactic and Galactic magnetic fields, as well as the significant uncertainty in their chemical composition (atomic mass), preclude one from tracing the observed events to their sources and finding the mechanisms for their acceleration. There are two ways to reduce the influence of magnetic deflection: by considering events with extremely high energy (EHECR, E > 1020 eV) and taking into account modern models of the Galactic magnetic field to correct its influence on the EHECR trajectory. In this study, the observed arrival directions of EHECRs from the Pierre Auger Observatory (PAO) and Telescope Array (TA) detectors' data are adjusted for the influence of Galactic and random extragalactic magnetic fields. New celestial positions of EHECRs are compared to the samples of potential sources used by the PAO—17 active galactic nuclei (AGNs) with powerful gamma radiation (from the 2FHL catalog) and 23 starburst galaxies (radio-flux-selected)—as well as with samples of 42 radio-galaxies from the parameterized catalog of radio-galaxies and magnetars. Taking into account the energy loss length of the nuclear component (H, He, C, Si, Fe) of EHECRs in the extragalactic environment and the expected typical distances to potential sources (~100 Mpc for H and Si-Fe and ~50 Mpc for He and C), the astrophysical objects that could be sources of relevant events were distinguished in the above samples. The potential acceleration mechanisms in the selected objects are analyzed, and the contribution of possible Galactic sources to the observed EHECR flux is evaluated.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. 1

    A. Aab, P. Abreu, M. Aglietta, et al., “Searches for large-scale anisotropy in the arrival directions of cosmic rays detected above energy of 1019 eV at the Pierre Auger Observatory and the Telescope Array,” Astrophys. J. 794, 172 (2014).

    ADS  Article  Google Scholar 

  2. 2

    A. Aab, P. Abreu, M. Aglietta, et al., “Searches for anisotropies in the arrival directions of the highest energy cosmic rays detected by the Pierre Auger Observatory,” Astrophys. J. 804, 15 (2015).

    ADS  Article  Google Scholar 

  3. 3

    A. Aab, P. Abreu, M. Aglietta, et al., “The Pierre Auger Cosmic Ray Observatory,” Nucl. Instrum. Methods Phys. Res., Sect. A 798, 172–213 (2015).

    Google Scholar 

  4. 4

    A. Aab, P. Abreu, M. Aglietta, et al., “Inferences on mass composition and tests of hadronic interactions from 0.3 to 100 EeV using the water-Cherenkov detectors of the Pierre Auger Observatory” (2017). arXiv 1710.07249

  5. 5

    A. Aab, P. Abreu, M. Aglietta, et al., “An indication of anisotropy in arrival directions of ultra-high-energy cosmic rays through comparison to the flux pattern of extragalactic gamma-ray sources,” Astrophys. J., Lett. 853, L29 (2018).

    ADS  Article  Google Scholar 

  6. 6

    R. U. Abbasi, M. Abe, T. Abu-Zayyad, et al., “Indications of intermediate-scale anisotropy of cosmic rays with energy greater than 57 EeV in the northern sky measured with the surface detector of the Telescope Array experiment,” Astrophys J., Lett. 790, L21 (2014).

    ADS  Article  Google Scholar 

  7. 7

    T. Abu-Zayyad, R. Aida, M. Allen, et al., “The surface detector array of the Telescope Array experiment,” Nucl. Instrum. Methods Phys. Res., Sect. A 689, 87–97 (2012).

    Google Scholar 

  8. 8

    T. Abu-Zayyad, R. Aida, M. Allen, et al., “Energy spectrum of ultra-high energy cosmic rays observed with the Telescope Array using a hybrid technique,” Astropart. Phys. 61, 93–101 (2015).

    ADS  Article  Google Scholar 

  9. 9

    R. Aloisio, V. Berezinsky, P. Blasi, et al., “A dip in the UHECR spectrum and the transition from galactic to extragalactic cosmic rays,” Astropart. Phys. 27, 76–91 (2007).

    ADS  Article  Google Scholar 

  10. 10

    J. Arons, “Magnetars in the metagalaxy: An origin for ultra high energy cosmic rays in the nearby Universe,” Astrophys. J. 589, 871–892 (2003).

    ADS  Article  Google Scholar 

  11. 11

    V. Berezinsky, “Extragalactic cosmic rays and their signatures,” Astropart. Phys. 53, 120–129 (2014).

    ADS  Article  Google Scholar 

  12. 12

    D. R. Bergman, “Combined fit of the spectrum and composition from Telescope Array,” in Proc. 36th Int. Cosmic Ray Conf. (ICRC 2019), Madison, WI, July 24 – Aug. 1,2019 (SISSA, Trieste, 2019), paper id. 190.

  13. 13

    P. L. Biermann, L. I. Caramete, F. Fraschetti, et al., “The nature and origin of ultra-high energy cosmic ray particles” (2016). arXiv 1610.00944

  14. 14

    D. J. Bird, S. C. Corbato, H. Y. Dai, et al., “Detection of a cosmic ray with measured energy well beyond the expected spectral cutoff due to cosmic microwave radiation,” Astrophys. J., Part 1 441, 144–150 (1995).

    ADS  Article  Google Scholar 

  15. 15

    L. Caccianiga, “Anisotropies of the highest energy cosmic-ray events recorded by the Pierre Auger Observatory in 15 years of operation,” in Proc. 36th Int. Cosmic Ray Conf. (ICRC 2019), Madison, WI, July 24 – Aug. 1,2019 (SISSA, Trieste, 2019), paper id. 206.

  16. 16

    O. Deligny, “The energy spectrum of ultra-high energy cosmic rays measured at the Pierre Auger Observatory and at the Telescope Array,” in Proc. 36th Int. Cosmic Ray Conf. (ICRC 2019), Madison, WI, July 24 – Aug. 1,2019 (SISSA, Trieste, 2019), paper id. 234.

  17. 17

    H. P. Dembinski, R. Engel, A. Fedynitch, et al., “Data-driven model of the cosmic-ray flux and mass composition from 10 GeV to 1011 GeV,” in Proc. 35th Int. Cosmic Ray Conf. (ICRC 2017), Bexco, Busan, Korea, July 10–20,2017 (SISSA, Trieste, 2017), paper id. 533.

  18. 18

    A. di Matteo, T. Bister, J. Biteau, et al., “Full-sky searches for anisotropies in UHECR arrival directions with the Pierre Auger Observatory and the Telescope Array,” in Proc. 36th Int. Cosmic Ray Conf. (ICRC 2019), Madison, WI, July 24 – Aug. 1,2019 (SISSA, Trieste, 2019), paper id. 439.

  19. 19

    R. Durrer and A. Neronov, “Cosmological magnetic fields: Their generation, evolution and observation,” Astron. Astrophys. Rev. 21, 62 (2013).

    ADS  Article  Google Scholar 

  20. 20

    K. Fang, K. Kotera, and A. V. Olinto, “Newly-born pulsars as sources of ultrahigh energy cosmic rays,” Astrophys. J. 750, 118 (2012).

    ADS  Article  Google Scholar 

  21. 21

    G. R. Farrar and A. Gruzinov, “Giant AGN flares and cosmic ray bursts,” Astrophys. J. 693, 329–332 (2009).

    ADS  Article  Google Scholar 

  22. 22

    G. R. Farrar and T. Piran, “Tidal disruption jets as the source of ultra-high energy cosmic rays” (2014). arXiv 1411.0704 [astro-ph.HE]

  23. 23

    G. R. Farrar and M. S. Sutherland, “Deflections of UHECRs in the Galactic magnetic field,” J. Cosmol. Astropart. Phys., No. 5, 004 (2019).

  24. 24

    T. Fitoussi, G. Medina-Tanco, and J.-C. D’Olivo, “Legacy from Fly’s Eye: Making sense of the highest energy cosmic ray ever observed,” in Proc. 36th Int. Cosmic Ray Conf. (ICRC 2019), Madison, WI, July 24 – Aug. 1,2019 (SISSA, Trieste, 2019), paper id. 256.

  25. 25

    M. Fukushima, “Recent results from Telescope Array” (2015). arXiv 1503.06961 [astro-ph.HE]

  26. 26

    N. Globus, D. Allard, R. Mochkovitch, et al., “UHECR acceleration at GRB internal shocks,” Mon. Not. R. Astron. Soc. 451, 751–790 (2015).

    ADS  Article  Google Scholar 

  27. 27

    C. Guépin and K. Kotera, “Can we observe neutrino flares in coincidence with explosive transients?,” Astron. Astrophys. 603, A76 (2017).

    ADS  Article  Google Scholar 

  28. 28

    F. Halzen, R. A. Vázquez, T. Stanev, et al., “The highest energy cosmic ray,” Astropart. Phys. 3, 151–156 (1995).

    ADS  Article  Google Scholar 

  29. 29

    W. Hanlon, “Telescope Array 10 year composition,” in Proc. 36th Int. Cosmic Ray Conf. (ICRC 2019), Madison, WI, July 24 – Aug. 1,2019 (SISSA, Trieste, 2019), paper id. 280.

  30. 30

    D. Hooper, S. Sarkar, and A. M. Taylor, “The intergalactic propagation of ultra-high energy cosmic ray nuclei: An analytic approach,” Phys. Rev. D 77, 103 007 (2008).

    Article  Google Scholar 

  31. 31

    S. Horiuchi, K. Murase, K. Ioka, et al., “The survival of nuclei in jets associated with core-collapse supernovae and gamma-ray bursts,” Astrophys. J. 753, 69 (2012).

    ADS  Article  Google Scholar 

  32. 32

    R. Jansson and G. R. Farrar, “The Galactic Magnetic Field,” Astrophys. J., Lett. 761, L11 (2012).

    ADS  Article  Google Scholar 

  33. 33

    R. Jansson and G. R. Farrar, “A New Model of the Galactic Magnetic Field,” Astrophys. J. 757, 14 (2012).

    ADS  Article  Google Scholar 

  34. 34

    K. Jedamzik and A. Saveliev, “Stringent limit on primordial magnetic fields from the cosmic microwave background radiation,” Phys. Rev. Lett. 123, 021301 (2019).

    ADS  Article  Google Scholar 

  35. 35

    K. Kawata, A. di Matteo, T. Fujii, et al., “TA Anisotropy Summary,” EPJ Web Conf. 210, 01004 (2019).

  36. 36

    K. Kotera, E. Amato, and P. Blasi, “The fate of ultrahigh energy nuclei in the immediate environment of young fast-rotating pulsars,” J. Cosmol. Astropart. Phys., No. 8, 026 (2015).

  37. 37

    K. Kotera and A. V. Olinto, “The astrophysics of ultrahigh energy cosmic rays,” Ann. Rev. Astron. Astrophys. 49, 119–153 (2011).

    ADS  Article  Google Scholar 

  38. 38

    D. Kuempel, “Extragalactic propagation of ultra-high energy cosmic rays” (2014). arXiv 1409.3129v2 [astro-ph.HE]

  39. 39

    M. Lemoine and E. Waxman, “Anisotropy vs chemical composition at ultra-high energies,” J. Cosmol. Astropart. Phys., No. 11, 009 (2009).

  40. 40

    P. Mészáros, “Ultra-high energy cosmic rays and neutrinos from gamma-ray bursts, hypernovae and galactic shocks,” Nucl. Phys. B (Proc. Suppl.) 256, 241–251 (2014).

    ADS  Article  Google Scholar 

  41. 41

    M. S. Muzio, M. Unger, and G. R. Farrar, “Progress towards characterizing ultrahigh energy cosmic ray sources,” Phys. Rev. D 100, 103008 (2019).

    ADS  Article  Google Scholar 

  42. 42

    M. Nagano and A. Watson, “Observations and implications of the ultrahigh-energy cosmic rays,” Rev. Mod. Phys. 72, 689–732 (2000).

    ADS  Article  Google Scholar 

  43. 43

    A. Neronov, “Supernova origin of cosmic rays from a γ-ray signal in the constellation III region of the Large Magellanic Cloud,” Phys. Rev. Lett. 119, 191102 (2017).

    ADS  Article  Google Scholar 

  44. 44

    C. A. Norman, D. B. Melrose, and A. Achterberg, “The origin of cosmic rays above 1018.5 eV,” Astrophys. J. 454, 60 (1995).

    ADS  Article  Google Scholar 

  45. 45

    S. A. Olausen and V. M. Kaspi, “The McGill magnetar catalog,” Astrophys. J., Suppl. Ser. 212, 6 (2014).

    ADS  Article  Google Scholar 

  46. 46

    C. J. T. Peixoto, “Estimating the depth of shower maximum using the surface detectors of the Pierre Auger Observatory,” in Proc. 36th Int. Cosmic Ray Conf. (ICRC 2019), Madison, WI, July 24 – Aug. 1,2019 (SISSA, Trieste, 2019), paper id. 440.

  47. 47

    J. P. Rachen and B. Eichmann, “A parameterized catalog of radio galaxies as ultra-high energy cosmic ray sources,” in Proc. 36th Int. Cosmic Ray Conf. (ICRC 2019), Madison, WI, July 24 – Aug. 1,2019 (SISSA, Trieste, 2019), paper id. 396.

  48. 48

    H. Takami, K. Murase, and C. D. Dermer, “Isotropy constraints on powerful sources of ultrahigh-energy cosmic rays at 1019 eV,” Astrophys. J. 817, 59 (2016).

    ADS  Article  Google Scholar 

  49. 49

    A. M. Taylor, “The need for hard spectra sources of nearby heavy cosmic rays,” EPJ Web Conf. 53, 06007 (2013).

  50. 50

    A. M. Taylor, M. Ahlers, and F. A. Aharonian, “Need for a local source of ultrahigh-energy cosmic-ray nuclei,” Phys. Rev. D. 84, 105007 (2011).

    ADS  Article  Google Scholar 

  51. 51

    R. B. Tully and J. R. Fisher, Nearby Galaxies Atlas (Cambridge Univ. Press., Cambridge, 1987).

    Google Scholar 

  52. 52

    R. B. Tully, D. Pomarède, R. Graziani, et al., “Cosmicflows-3: Cosmography of the Local Void,” Astrophys. J. 880, 24 (2019).

    ADS  Article  Google Scholar 

  53. 53

    A. Yushkov, “Mass composition of cosmic rays with energies above 1017.2 eV from the hybrid data of the Pierre Auger Observatory,” in Proc. 36th Int. Cosmic Ray Conf. (ICRC 2019), Madison, WI, July 24 – Aug. 1,2019 (SISSA, Trieste, 2019), paper id. 482.

  54. 54

    B. T. Zhang, K. Murase, S. S. Kimura, et al., “Low-luminosity gamma-ray bursts as the sources of ultrahigh-energy cosmic ray nuclei,” Phys. Rev. D 97, 083010 (2018).

    ADS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The publication contains the results of studies carried out under the grant from the President of Ukraine as part of the competitive project number F82/46932.

We are grateful for the use of the following: ATFF Pulsar Catalogue (http://www.atnf.csiro.au/people/pulsar/ psrcat/), the McGill Magnetar Catalog (http://www.physics.mcgill.ca/~pulsar/magnetar/main.html), the SNR Catalog (http://www.physics.umanitoba.ca/snr/SNRcat/), the SIMBAD database operated at CDS, Strasbourg, France.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to R. Hnatyk or V. Voitsekhovskyi.

Additional information

Translated by M. Chubarova

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hnatyk, R., Voitsekhovskyi, V. Extremely High Energy (E > 1020 eV) Cosmic Rays: Potential Sources. Kinemat. Phys. Celest. Bodies 36, 129–139 (2020). https://doi.org/10.3103/S0884591320030046

Download citation

Keywords:

  • cosmic rays
  • active galactic nuclei
  • radio-galaxies
  • magnetars