Kinematics and Physics of Celestial Bodies

, Volume 33, Issue 5, pp 199–216 | Cite as

Peculiarities of the abundance of chemical elements in the atmosphere of PMMR23-red supergiant in the Small Magellanic Cloud due to interstellar gas accretion

  • A. V. Yushchenko
  • V. F. Gopka
  • A. V. Shavrina
  • V. A. Yushchenko
  • S. V. Vasileva
  • S. M. Andrievsky
  • A. A. Raikov
  • S. Kim
  • P. Rittipruk
  • Y. Jeong
  • Y.-W. Kang
Physics of Stars and Interstellar Medium


The chemical composition of the PMMR23 red supergiant located in the Small Magellanic Cloud (SMC) is analyzed. The abundance of 35 chemical elements and the upper limits of abundance for Tl and U are found. The relative abundance of heavy elements is higher by 0.6–1.0 dex with respect to iron peak elements. The spectra of several SMC red supergiants PMMR27, PMMR28, and PMMR144—located in the region where the velocities of stars and interstellar gas are quite high— show the emission components in the wings of the hydrogen line. This emission is not detected for PMMR23. A possibility of interstellar gas accretion on the atmospheres of PMMR23 and other supergiants in Magellanic Clouds is discussed. The analysis is carried out using spectra measured at ESO 3.6 m telescope with the spectral resolving power R = 30000.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. M. Adams, C. S. Kochanek, J. R. Gerke, K. Z. Stanek, and X. Dai, “The search for failed supernovae with the Large Binocular Telescope: Confirmation of a disappearing star,” Mon. Not. R. Astron. Soc. 468, 4968–4981 (2017). Scholar
  2. 2.
    P. C. Allende, D. L. Lambert, and M. Asplund, “The forbidden abundance of oxygen in the Sun,” Astrophys. J. Lett. 556, L63–L66 (2001).ADSCrossRefGoogle Scholar
  3. 3.
    K. Bekki, “When was the Large Magellanic Cloud accreted on to the Galaxy?,” Mon. Not. R. Astron. Soc. 416, 2359–2367 (2011).ADSCrossRefGoogle Scholar
  4. 4.
    J. Biemont, P. Palmeri, and P. Quinet, Database of Rare Earths at Mons University (2002). http://www.umh. Scholar
  5. 5.
    E. Böhm-Vitense, “The puzzle of the metallic line stars,” Publ. Astron. Soc. Pac. 118, 419–435 (2006).ADSCrossRefGoogle Scholar
  6. 6.
    A. Z. Bonanos, D. J. Lennon, F. Köhlinger, et al., “Spitzer SAGE-SMC infrared photometry of massive stars in the Small Magellanic Cloud,” Astron. J. 140, 416–429 (2010).ADSCrossRefGoogle Scholar
  7. 7.
    A. Z. Bonanos, D. L. Massa, M. Sewilo, et al., “Spitzer SAGE infrared photometry of massive stars in the Large Magellanic Cloud,” Astron. J. 138, 1003–1021 (2009).ADSCrossRefGoogle Scholar
  8. 8.
    M. L. Boyer, S. Srinivasan, J. Th. van Loon, et al., “Surveying the agents of galaxy evolution in the tidally stripped, low metallicity Small Magellanic Cloud (SAGE-SMC). II. Cool evolved stars,” Astron. J. 142, 103 (2011).ADSCrossRefGoogle Scholar
  9. 9.
    F. Castelli and R. L. Kurucz, “New grids of ATLAS9 model atmospheres,” in Modelling of Stellar Atmospheres: Proc. 210th IAU Symp., Uppsala, Sweden, June 17–21, 2002, Ed. by N. Piskunov, W. W. Weiss, and D. F. Gray (Astron. Soc. Pac., San Francisco, CA, 2003), poster A20.Google Scholar
  10. 10.
    L. Delbouille, G. Roland, and L. Neven, Photometric Atlas of the Solar Spectrum from λ 3000 to λ 10000 (Inst. d’Astrophis. de l’Univ. de Lillge, Cointe-Ougree, Belgium, 1973). Magnetic tape copy.Google Scholar
  11. 11.
    E. A. Den Hartog, J. E. Lawler, C. Sneden, and J. J. Cowan, “Improved laboratory transition probabilities for Nd II and application to the neodymium abundances of the Sun and three metal-poor stars,” Astrophys. J. Suppl. Ser. 148, 543–566 (2003).ADSCrossRefGoogle Scholar
  12. 12.
    J. H. Elias, J. A. Frogel, and R. A. Humphreys, “M supergiants in the Milky Way and the Magellanic Clouds: Colors, spectral types, and luminosities,” Astrophys. J. Suppl. Ser. 57, 91–131 (1985).ADSCrossRefGoogle Scholar
  13. 13.
    J. R. Fuhr and W. L. Wiese, “A critical compilation of atomic transition probabilities for neutral and singly ionized iron,” J. Phys. Chem. Ref. Data 35, 1669–1809 (2006).ADSCrossRefGoogle Scholar
  14. 14.
    J. R. Gerke, C. S. Kochanek, and K. Z. Stanek, “The search for failed supernovae with the Large Binocular Telescope: First candidates,” Mon. Not. R. Astron. Soc. 150, 3289–3305 (2015).ADSCrossRefGoogle Scholar
  15. 15.
    C. González-Fernández, R. Dorda, I. Negueruela, and A. Marco, “A new survey of cool supergiants in the Magellanic Clouds,” Astron. Astrophys. 578, A3 (2015).CrossRefGoogle Scholar
  16. 16.
    V. F. Gopka, A. V. Shavrina, V. A. Yushchenko, et al., “On the thorium absorption lines in the visible spectra of supergiant stars in the Magellanic Clouds,” Bull. Crimean Astrophys. Observatory 109, 41–47 (2013).ADSCrossRefGoogle Scholar
  17. 17.
    V. F. Gopka, S. V. Vasil’eva, A. V. Yushchenko, and S. M. Andrievsky, “Thorium lines in the spectra of several SMC supergiant stars,” Odessa Astron. Publ. 20, 58–61 (2007).ADSGoogle Scholar
  18. 18.
    V. F. Gopka, A. V. Yushchenko, S. M. Andrievsky, et al., “The abundances of chemical elements in the atmospheres of K-supergiants in the Small Magellanic Cloud and Arcturus,” in From Lithium to Uranium: Elemental Tracers of Early Cosmic Evolution, Paris, France: Proc. 228th IAU Symp., May 23–27, 2005 (Cambridge Univ. Press, Cambridge, MA, 2007), pp. 535–536.Google Scholar
  19. 19.
    V. Gopka, A. Yushchenko, V. Kovtyukh, et al., “The abundances of heavy elements in red supergiants of Magellanic Clouds,” Odessa Astron. Publ. 26, 54–59 (2013).ADSGoogle Scholar
  20. 20.
    V. F. Gopka, A. V. Yushchenko, T. V. Mishenina, et al., “Atmospheric chemical composition of the halo star HD 221170 from a synthetic-spectrum analysis,” Astron. Rep. 48, 577–587 (2004).ADSCrossRefGoogle Scholar
  21. 21.
    J. L. Greenstein, “Analysis of the metallic-line stars. II.,” Astrophys. J. 109, 121–138 (1949).ADSCrossRefGoogle Scholar
  22. 22.
    N. Grevesse, M. Asplund, A. J. Sauval, and P. Scott, “The chemical composition of the Sun,” Astrophys. Space Sci. 328, 179–183 (2010).ADSCrossRefGoogle Scholar
  23. 23.
    N. Grevesse, P. Scott, M. Asplund, and A. J. Sauval, “The elemental composition of the Sun. III. The heavy elements Cu to Th,” Astron. Astrophys. 573, A27 (2015).ADSCrossRefGoogle Scholar
  24. 24.
    O. Havnes, “Abundances and acceleration mechanisms of cosmic rays,” Nature 229, 548–549 (1971).ADSCrossRefGoogle Scholar
  25. 25.
    O. Havnes, “Magnetic stars as generators of cosmic rays,” Astron. Astrophys. 13, 52–57 (1971).ADSGoogle Scholar
  26. 26.
    O. Havnes and P. S. Conti, “Magnetic accretion processes in peculiar A stars,” Astron. Astrophys. 14, 1–11 (1971).ADSGoogle Scholar
  27. 27.
    A. Heger, C. L. Fryer, S. E. Woosley, N. Longer, and D. H. Hartmann, “How massive single stars end their life,” Astrophys. J. 591, 288–300 (2003).ADSCrossRefGoogle Scholar
  28. 28.
    V. Hill, “Chemical composition of six K supergiants in the Small Magellanic Cloud,” Astron. Astrophys. 324, 435–448 (1997).ADSGoogle Scholar
  29. 29.
    R. W. Hildithich, I. D. Howarth, and T. J. Harries, “Forty eclypcing binaries in the Small Magellanic Cloud,” Mon. Not. R. Astron. Soc. 357, 304–324 (2006).ADSCrossRefGoogle Scholar
  30. 30.
    V. Hill, V. Barbuy, and M. Spite, “Carbon, nitrogen, oxygen and lithium abundances of six cool supergiants in the SMC,” Astron. Astrophys. 323, 461–468 (1997).ADSGoogle Scholar
  31. 31.
    R. Hirata and T. Horaguchi, “Atomic spectral line list,” SIMBAD Catalog VI/69 (1995). pub/cats/VI/69.Google Scholar
  32. 32.
    R. M. Humphreys, “M supergiants and the low metal abundances in the Small Magellanic Cloud,” Astrophys. J. 231, 384–387 (1979).ADSCrossRefGoogle Scholar
  33. 33.
    Y.-W. Kang, A. Yushchenko, K. Hong, S. Kim, and V. Yushchenko, “Chemical composition of the components of eclipsing binary star ZZ Bootis,” Astron. J. 144, 35 (2012).ADSCrossRefGoogle Scholar
  34. 34.
    Y.-W. Kang, A. V. Yushchenko, K. Hong, E. F. Guinan, and V. F. Gopka, “Signs of accretion in the abundance patterns of the components of the RS CVn-type eclipsing binary star LX Persei,” Astron. J. 145, 167 (2013).ADSCrossRefGoogle Scholar
  35. 35.
    D. E. Kelleher and L. I. Podobedava, “Atomic transition probabilities of sodium and magnesium. A critical compilation,” J. Phys. Chem. Ref. Data 37, 267–706 (2008).ADSCrossRefGoogle Scholar
  36. 36.
    D. E. Kelleher and L. I. Podobedava, “Atomic transition probabilities of aluminum. A critical compilation,” J. Phys. Chem. Ref. Data. 37, 709–911 (2008).ADSCrossRefGoogle Scholar
  37. 37.
    C. S. Kochanek, J. F. Beacom, M. D. Kistler, et al., “A survey about nothing: Monitoring a million supergiants for failed supernovae,” Astrophys. J. 684, 1336–1342 (2008).ADSCrossRefGoogle Scholar
  38. 38.
    R. L. Kurucz, “Atomic and molecular data for opacity calculations,” Rev. Mex. Astron. Astrofis. 23, 45–48 (1992).ADSGoogle Scholar
  39. 39.
    R. L. Kurucz, Atomic Data for Opacity Calculations, Kurucz CD-ROM No. 1–23 (Smithson. Astrophys. Obs., Cambridge, MA, 1993).Google Scholar
  40. 40.
    R. L. Kurucz, “An atomic and molecular data bank for stellar spectroscopy,” in Proc. Workshop on Laboratory and Astronomical High Resolution Spectra, Brussels, Belgium, Aug. 29–Sept. 2 1994, Ed. by A. J. Sauval, R. Blomme, and N. Grevesse (Astron. Soc. Pac., San Francisco, CA, 1995), in Ser.: ASP Conference Series, Vol. 81, pp. 583–588.ADSGoogle Scholar
  41. 41.
    R. L. Kurucz and E. Peytremann, “A table of semiempirical gf values. Part 1: Wavelengths: 5.2682 nm to 272.3380 nm,” Smithsonian Astrophysical Observatory Special Report No. 362, Part 1, 1–1223 (Smithson. Astrophys. Obs., Harvard, MA, 1975).Google Scholar
  42. 42.
    E. M. Levesque, “Red supergiants in Local Group,” in Proc. Betelgeuse Workshop 2012: The Physics of Red Supergiants: Recent Advances and Open Questions, Ed. by P. Kervella, T. Le Bertre, and G. Perrin; EAS Publ. Ser. 60, 269–277 (2013).Google Scholar
  43. 43.
    K. Lodders, “Solar system abundances and condensation temperatures of the elements,” Astrophys. J. 591, 1220–1247 (2003).ADSCrossRefGoogle Scholar
  44. 44.
    N. Martin, E. Maurice, and J. Lequeux, “The structure of the Small Magellanic Cloud,” Astron. Astrophys. 215, 219–242 (1989).ADSGoogle Scholar
  45. 45.
    L. Mashonkina, T. Ryabchikova, A. Ryabtsev, and R. Kildiyarova, “Non-LTE line formation for Pr II and Pr III in A and Ap stars,” Astron. Astrophys. 495, 297–311 (2009).ADSCrossRefGoogle Scholar
  46. 46.
    P. Massey and K. A. G. Olsen, “The evolution of massive stars. I. Red supergiants in the Magellanic Clouds,” Astron. J. 126, 2867–2886 (2003).ADSCrossRefGoogle Scholar
  47. 47.
    R. X. McGee and L. M. Newton, “HI in the Small Magellanic Cloud re-examined,” Proc. -Astron. Soc. Aust. 4, 189–195 (1981).ADSCrossRefGoogle Scholar
  48. 48.
    G. Meynet, V. Chomienne, S. Ekström, et al., “Impact of mass-loss on the evolution and pre-supernova properties of red supergiants,” Astron. Astrophys. 575, A60 (2015).CrossRefGoogle Scholar
  49. 49.
    D. C. Morton, “Atomic data for resonance absorption lines. II. Wavelengths longward of the Lyman limit for heavy elements,” Astrophys. J. Suppl. Ser. 130, 403–436 (2000).ADSCrossRefGoogle Scholar
  50. 50.
    U. Munari, A. Henden, A. Frigo, et al., “APASS Landolt–Sloan BVgri photometry of RAVE stars. I. Data, effective temperatures, and reddenings,” Astron. J. 148, 81 (2014).ADSCrossRefGoogle Scholar
  51. 51.
    S. J. Murphy and E. Paunzen, “Gaia’s view of the λ Boo star puzzle,” Mon. Not. R. Astron. Soc. 466, 546–555 (2017).ADSCrossRefGoogle Scholar
  52. 52.
    H. Nilsson, S. Ivarsson, S. Johansson, and H. Lundberg, “Experimental oscillator strengths in U II of cosmological interest,” Astron. Astrophys. 381, 1090–1093 (2002).ADSCrossRefGoogle Scholar
  53. 53.
    H. Nilsson, Z. G. Zhang, H. Lundberg, S. Johansson, and B. Nordström, “Experimental oscillator strengths in Th II,” Astron. Astrophys. 382, 368–377 (2002).ADSCrossRefGoogle Scholar
  54. 54.
    N. E. Piskunov, F. Kupka, T. A. Ryabchikova, W. W. Weiss, and C. S. Jeffery, “VALD: The Vienna Atomic Line Data Base,” Astron. Astrophys. Suppl. Ser. 112, 525–535 (1995).ADSGoogle Scholar
  55. 55.
    L. Prevot, N. Martin, E. Rebeirot, E. Maurice, and J. Rousseau, “A catalogue of late-type supergiant stars in the Small Magellanic Cloud,” Astron. Astrophys. Suppl. Ser. 53, 255–269 (1983).ADSGoogle Scholar
  56. 56.
    C. R. Proffitt and G. Michaud, “Abundance anomalies in A and B stars and the accretion of nuclear-processed material from supernovae and evolved giants,” Astrophys. J. 345, 998–1007 (1989).ADSCrossRefGoogle Scholar
  57. 57.
    D. Proga, S. J. Kenyon, and J. C. Raymond, “Illumination in symbiotic binary stars: Non-LTE photoionization models. II. Wind case,” Astrophys. J. 501, 339–356 (1998).ADSCrossRefGoogle Scholar
  58. 58.
    J. Ren, N. Christlieb, and G. Zhao, “The Hamburg/ESO R-process Enhanced Star survey (HERES). VII. Thorium abundances in metal-poor stars,” Astron. Astrophys. 537, A18 (2012).ADSCrossRefGoogle Scholar
  59. 59.
    S. C. Russell, “Heavy element abundances in the Magellanic clouds,” Proc. - Astron. Soc. Aust. 9, 82–83 (1991).ADSCrossRefGoogle Scholar
  60. 60.
    J. Simmerer, C. Sneden, J. J. Cowan, J. Collier, V. M. Woolf, and J. E. Lawler, “The rise of the s-process in the galaxy,” Astrophys. J. 617, 1091–1114 (2004).ADSCrossRefGoogle Scholar
  61. 61.
    C. Siqueira Mello, V. Hill, B. Barbuy, et al., “High-resolution abundance analysis of very metal-poor r-I stars,” Astron. Astrophys. 565, A93 (2014).CrossRefGoogle Scholar
  62. 62.
    D. J. Smartt, “Observational constraints on the progenitors of core-collapse supernovae: The case for missing high-mass stars,” Publ. Astron. Soc. Aust. 32, e016 (2015).ADSCrossRefGoogle Scholar
  63. 63.
    O. Szewczyk, G. Pietrzynski, W. Gieren, et al., “The Araucaria project: The distance to the Small Magellanic Cloud from near-infrared photometry of RR Lyrae variables,” Astron. J. 138, 1661–1666 (2009).ADSCrossRefGoogle Scholar
  64. 64.
    K. A. Venn and D. L. Lambert, “The chemical composition of three Lambda Bootis stars,” Astrophys. J. 363, 234–244 (1990).ADSCrossRefGoogle Scholar
  65. 65.
    K. A. Venn and D. L. Lambert, “Could the ultra-metal-poor stars be chemically peculiar and not related to the first stars?,” Astrophys. J. 677, 572–580 (2008).ADSCrossRefGoogle Scholar
  66. 66.
    A. V. Yushchenko, “URAN: A software system for the analysis of stellar spectra,” in Proc. 20th Stellar Conf. of the Czech and Slovak Astronomical Institutes, Brno, Czech Republic, Nov. 5–7, 1997, Ed. by J. Dusek (N. Copernicus Obs. and Planetarium Brno, Brno, 1998), pp. 201–203.Google Scholar
  67. 67.
    A. Yushchenko, V. Gopka, S. Goriely, et al., “Thorium-rich halo star HD221170: Further evidence against the universality of the r-process,” Astron. Astrophys. 430, 255–262 (2005).ADSCrossRefGoogle Scholar
  68. 68.
    A. V. Yushchenko, V. F. Gopka, Y.-W. Kang, et al., “The chemical composition of ? Puppis and the signs of accretion in the atmospheres of B–F-type stars,” Astron. J. 149, 59 (2015).ADSCrossRefGoogle Scholar
  69. 69.
    A. V. Yushchenko, V. F. Gopka, V. L. Khokhlova, F. A. Musaev, and I. F. Bikmaev, “Atmospheric chemical composition of the “twin” components of equal mass in the CP SB2 system 66 Eri,” Astron. Lett. 25, 453–466 (1999).ADSGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • A. V. Yushchenko
    • 1
  • V. F. Gopka
    • 2
  • A. V. Shavrina
    • 3
  • V. A. Yushchenko
    • 2
  • S. V. Vasileva
    • 2
  • S. M. Andrievsky
    • 2
    • 5
  • A. A. Raikov
    • 4
  • S. Kim
    • 1
  • P. Rittipruk
    • 1
  • Y. Jeong
    • 1
  • Y.-W. Kang
    • 1
  1. 1.Sejong UniversitySeoulSouth Korea
  2. 2.Odessa National UniversityOdessaUkraine
  3. 3.Main Astronomical ObservatoryNational Academy of Sciences of UkraineKyivUkraine
  4. 4.Main (Pulkovo) Astronomical Observatory of the Russian Academy of SciencesSt. PetersburgRussia
  5. 5.GEPI, Observatoire de ParisPSL Research University, CNRS, Place Jules JanssenMeudonFrance

Personalised recommendations