Skip to main content
Log in

Fourier analysis of spectra of solar-type stars

  • Physics of Stars and Interstellar Medium
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract

Fourier transform techniques were used to determine the macroturbulent velocity under the condition that mictoturbulent and stellar rotation velocities are not known. In order to distinguish the effects of rotation from macroturbulence effects in slowly rotating stars, primarily the main lobe of residual Fourier transforms of the observed lines, which were taken from the solar spectrum and the spectra of two other stars, was used. This case of Fourier analysis of spectral lines is the most complicated one. The end results were in a satisfactory agreement with the data obtained using different methods. The average values of microturbulent, macroturbulent, and rotation velocities were 0.85, 2.22, and 1.75 km/s for the Sun as the star; 0.58, 1.73, and 0.78 km/s for HD 10700; and 1.16, 3.56, and 6.24 km/s for HD 1835. It was found that the macroturbulent velocity decreases with height in the atmosphere of the Sun and HD 1835. In the case of HD 10700, the macroturbulent velocity did not change with height, and the determined rotation velocity was two times lower than the one obtained using other methods. It was concluded that Fourier transform techniques are suitable for determining the velocities in atmospheres of solar-type stars with very slow rotation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Gadun and V. A. Sheminova, Preprint No. ITF-88-87P (Institute for Theoretical Physics of the Ukrainian SSR Academy of Sciences, Kiev, 1988).

    Google Scholar 

  2. E. A. Gurtovenko and V. A. Sheminova, Preprint No. GAO-97-1P (Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, 1997). https://arxiv.org/abs/1505.00975.

    Google Scholar 

  3. V. A. Sheminova, “Turbulence in the photosphere of the Sun as a star. III. Micro-macroturbulence,” Soln. Dannye 8, 70–77 (1984).

    ADS  Google Scholar 

  4. V. A. Sheminova, “Macroturbulence and microturbulence in the solar photosphere,” Kinematika Fiz. Nebesnykh Tel 1, 50–52 (1985).

    ADS  Google Scholar 

  5. V. A. Sheminova and A. S. Gadun, “Fourier analysis of Fe I lines in spectra of the Sun, a Centauri A, Procyon, Arcturus and Canopus,” Kinematika Fiz. Nebesnykh Tel 14, 219–233 (1998). https://arxiv.org/abs/1004.3286.

    ADS  Google Scholar 

  6. M. Asplund, N. Grevesse, and A. J. Sauval, “The solar chemical composition,” in Proc. Symp. on Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis in honor of David L. Lambert, Austin, TX, June 17–19, 2004, Ed. by T. G. Barnes III and F. N. Bash (Astron. Soc. Pac., San Francisco, CA, 2005), in Ser.: ASP Conference Series, Vol. 336, pp. 25–38.

    ADS  Google Scholar 

  7. P. S. Barklem and J. Aspelund-Johansson, “The broadening of Fe II lines by neutral hydrogen collisions,” Astron. Astrophys. 435, 373–377 (2005).

    Article  ADS  Google Scholar 

  8. P. S. Barklem, N. Piskunov, and B. J. O’Mara, “A list of data for the broadening of metallic lines by neutral hydrogen collisions,” Astron. Astrophys. Suppl. Ser. 142, 467–473 (2000).

    Article  ADS  Google Scholar 

  9. J. W. Brault and O. R. White, “The analysis and restoration of astronomical data via the fast Fourier transform,” Astron. Astrophys. 13, 169–189 (1971).

    ADS  Google Scholar 

  10. D. H. Bruning, “The applicability of the Fourier convolution theorem to the analysis of late-type stellar spectra,” Astrophys. J. 281, 830–838 (1984).

    Article  ADS  Google Scholar 

  11. V. Caccin, A. Donati-Falchi, and R. Falciani, “Temperature variations in the solar photosphere. III: Kitt Peak measurements of the variations of photospheric line profiles with the heliographic latitude,” Sol. Phys. 46, 29–52 (1976).

    Article  ADS  Google Scholar 

  12. J. R. Fuhr and W. L. Wiese, “A critical compilation of atomic transition probabilities for neutral and singly ionized iron,” J. Phys. and Chem. Ref. Data 35, 1669–1809 (2006).

    Article  ADS  Google Scholar 

  13. A. S. Gadun and R. I. Kostyk, “Analysis of absorption line profiles in the spectra of the Sun and Procyon — Velocity field and size of inhomogeneities,” Sov. Astron. 34, 260–263 (1990).

    ADS  Google Scholar 

  14. T. Gehren, K. Butler, L. Mashonkina, J. Reetz, and J. Shi, “Kinetic equilibrium of iron in the atmospheres of cool dwarf stars. I. The solar strong line spectrum,” Astron. Astrophys. 366, 981–1002 (2001).

    Article  ADS  Google Scholar 

  15. D. F. Gray, “On the existence of classical microturbulence,” Astrophys. J. 184, 461–472 (1973).

    Article  ADS  Google Scholar 

  16. D. F. Gray, “Atmospheric turbulence measured in stars above the main sequence,” Astrophys. J. 202, 148–164 (1975).

    Article  ADS  Google Scholar 

  17. D. F. Gray, The Observation and Analysis of Stellar Photospheres (Wiley, New York, 1976).

    Google Scholar 

  18. D. F. Gray, “A test of the micro-macroturbulence model on the solar flux spectrum,” Astrophys. J. 218, 530–538 (1977).

    Article  ADS  Google Scholar 

  19. D. F. Gray, “The temperature dependence of rotation and turbulence in giant stars,” Astrophys. J. 262, 682–699 (1982).

    Article  ADS  Google Scholar 

  20. D. F. Gray, “Precise rotation rates for five slowly rotating A stars,” Astron. J. 147, 81 (2014).

    Article  ADS  Google Scholar 

  21. D. F. Gray and K. I. T. Brown, “The rotation of Arcturus and active longitudes on giant stars,” Publ. Astron. Soc. Pac. 118, 1112–1118 (2006).

    Article  ADS  Google Scholar 

  22. E. A. Gurtovenko and V. A. Sheminova, “‘Crossing’ method for studying the turbulence in solar and stellar atmospheres. I: Application to the Sun,” Sol. Phys. 106, 237–247 (1986).

    Article  ADS  Google Scholar 

  23. B. Gustafsson, B. Edvardsson, K. Eriksson, et al., “A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties,” Astron. Astrophys. 486, 951–970 (2008).

    Article  ADS  Google Scholar 

  24. K. Hinkle and L. Wallace, “The spectrum of Arcturus from the infrared through the ultraviolet,” in Proc. Symp. on Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis in honor of David L. Lambert, Austin, TX, June 17–19, 2004, Ed. by T. G. Barnes III and F. N. Bash (Astron. Soc. Pac., San Francisco, CA, 2005), in Ser.: ASP Conference Series, Vol. 336, pp. 321–326.

    ADS  Google Scholar 

  25. J. S. Jenkins, H. R. A. Jones, Y. Pavlenko, et al., “Metallicities and activities of southern stars,” Astron. Astrophys. 485, 571–584 (2008).

    Article  ADS  Google Scholar 

  26. R. I. Kostik, “Damping constant and turbulence in the solar atmosphere,” Sol. Phys. 78, 39–57 (1982).

    Article  ADS  Google Scholar 

  27. F. Kupka, N. Piskunov, T. A. Ryabchikova, et al., “VALD–2: Progress of the Vienna atomic line data base,” Astron. Astrophys. Suppl. Ser. 138, 119–133 (1999).

    Article  ADS  Google Scholar 

  28. R. L. Kurucz, “Atlas: A computer program for calculating model stellar atmospheres,” SAO Special Report No. 309 (Smithson. Astrophys. Obs., Cambridge, MA, 1970).

    Google Scholar 

  29. L. Mashonkina, T. Gehren, J.-R. Shi, et al., “A non-LTE study of neutral and singly-ionized iron line spectra in 1D models of the Sun and selected late-type stars,” Astron. Astrophys. 528, A87 (2011).

    Article  ADS  Google Scholar 

  30. Ya. V. Pavlenko, J. S. Jenkins, H. R. A. Jones, et al., “Effective temperatures, rotational velocities, microturbulent velocities and abundances in the atmospheres of the Sun, HD 1835 and HD 10700,” Mon. Not. R. Astron. Soc. 422, 542–552 (2012).

    Article  ADS  Google Scholar 

  31. P. Scott, M. Asplund, N. Grevesse, et al., “The elemental composition of the Sun. II. The iron group elements Sc to Ni,” Astron. Astrophys. 537, A26 (2015).

    Article  Google Scholar 

  32. M. A. Smith, “Applications of Fourier analysis to broadening of stellar line profiles. IV. A technique for separating macroturbulence from rotation in solar-type stars,” Astrophys. J. 208, 487–499 (1976).

    Article  ADS  Google Scholar 

  33. M. A. Smith, “Rotational studies of lower main-sequence stars,” Publ. Astron. Soc. Pac. 91, 737–745 (1979).

    Article  ADS  Google Scholar 

  34. M. A. Smith and J. F. Dominy, “The dependence of macroturbulence on luminosity in early K-type stars,” Astrophys. J. 231, 477–490 (1979).

    Article  ADS  Google Scholar 

  35. M. A. Smith, L. Testerman, and J. C. Evans, “Applications of Fourier analysis to broadening of stellar line profiles. III. Solar microturbulence and macroturbulence from iron lines,” Astrophys. J. 207, 308–324 (1976).

    Article  ADS  Google Scholar 

  36. M. Steffen, E. Caffau, and H.-G. Ludwig, “Micro-and macroturbulence predictions from CO5BOLD 3D stellar atmospheres,” Mem. Soc. Astron. Ital. Suppl. 24, 37–52 (2013).

    ADS  Google Scholar 

  37. Y. Takeda, “Analyses of line profiles in the solar flux spectrum for determining rotation and micro/macro turbulence,” Publ. Astron. Soc. Jpn. 47, 337–354 (1995).

    ADS  Google Scholar 

  38. J. A. Valenti and D. A. Fischer, “Spectroscopic properties of cool stars (SPOCS). I. 1040 F, G, and K dwarfs from Keck, Lick, and AAT planet search programs,” Astrophys. J. Suppl. Ser. 159, 141–166 (2005).

    Article  ADS  Google Scholar 

  39. J. A. Valenti and N. Piskunov, “Spectroscopy made easy: A new tool for fitting observations with synthetic spectra,” Astron. Astrophys. Suppl. Ser. 118, 595–603 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Sheminova.

Additional information

Original Russian Text © V.A. Sheminova, 2017, published in Kinematika i Fizika Nebesnykh Tel, 2017, Vol. 33, No. 5, pp. 27–48.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheminova, V.A. Fourier analysis of spectra of solar-type stars. Kinemat. Phys. Celest. Bodies 33, 217–230 (2017). https://doi.org/10.3103/S0884591317050063

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591317050063

Navigation