Skip to main content
Log in

Corrected spectral dependence of the imaginary part of the refractive index of aerosol in Jupiter’s atmosphere in the short-wavelength spectral range

  • Dynamics and Physics of Bodies of the Solar System
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract

To correctly determine the relative contribution of aerosol to the scattering properties of a gas–aerosol medium in the continuum, we propose a method that allows more reliable values of the imaginary part of the refractive index n i to be obtained for Jupiter’s atmosphere in the short-wavelength spectral range. We considered the measurement data on the spectral values of the geometric albedo of Jupiter acquired in 1993 and used the model of homogeneous spherical aerosol particles. The obtained values of n i are 0.00378, 0.00309, 0.00254, 0.00175, 0.00123, 0.00084, 0.00064, 0.00045, 0.00031, 0.00033, 0.00013, and 0.00008 at wavelengths λ = 320, 350, 375, 400, 420, 450, 470, 500, 520, 550, 606, and 631 nm, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Morozhenko, “Jovian cloud stratification,” Sov. Astron. Lett. 10, 323–325 (1984).

    ADS  Google Scholar 

  2. A. V. Morozhenko, “Vertical structure of the latitude cloud bands of Jupiter,” Sol. Syst. Res. 19, 44–52 (1985).

    Google Scholar 

  3. A. V. Morozhenko, “Problems of the vertical structure of cloud layers in the atmospheres of giant planets,” Kinematika Fiz. Nebesnykh Tel 9 (6), 3–26 (1993).

    MathSciNet  Google Scholar 

  4. A. V. Morozhenko, “Difference in the vertical structure of cloud layers of giant planets,” Kinematika Fiz. Nebesnykh Tel 17, 261–278 (2001).

    ADS  Google Scholar 

  5. A. V. Morozhenko and A. S. Ovsak, “On the possibility of determining the imaginary part of the complex refractive index of aerosol particles in an individual altitudinal cloud layer of Jupiter’s atmosphere,” Kinematics Phys. Celestial Bodies 32, 294–298 (2016).

    Article  ADS  Google Scholar 

  6. A. V. Morozhenko and E. G. Yanovitskij, “Parameters of an optical model of the Jupiter atmosphere for continuous spectra in the 0.35–0.92 micron region,” Sov. Astron. Lett. 2, 20–21 (1976).

    ADS  Google Scholar 

  7. Z. M. Dlugach and M. I. Mischenko, “The effect of aerosol shape in retrieving optical properties of cloud particles in the planetary atmospheres from the photopolarimetric data. Jupiter,” Sol. Syst. Res. 39, 102–111 (2005).

    Article  ADS  Google Scholar 

  8. Z. M. Dlugach and M. I. Mischenko, “Photopolarimetry of planetary atmospheres: What observational data are essential for a unique retrieval of aerosol microphysics?,” Mon. Not. R. Astron. Soc. 384, 64–70 (2008).

    Article  ADS  Google Scholar 

  9. E. Karkoschka, “Spectrophotometry of the Jovian planets and Titan at 300-to 1000-nm wavelength: The methane spectrum,” Icarus 111, 967–982 (1994).

    Article  Google Scholar 

  10. V. N. Khare, C. Sagan, E. T. Arakawa, et al., “Optical constants of organic tholins produced in a simulated Titanian atmosphere: From soft x-ray to microwave frequencies,” Icarus 60, 127–137 (1984).

    Article  ADS  Google Scholar 

  11. B. N. Khare, C. Sagan, W. R. Thompson, et al., “Solid hydrocarbon aerosols produced in simulated Uranian and Neptunian stratospheres,” J. Geophys. Res.: Space Phys. 92, 15067–15082 (1987).

    Article  ADS  Google Scholar 

  12. M. I. Mishchenko, “Physical properties of the upper tropospheric aerosols in the equatorial region of Jupiter,” Icarus 84, 296–304 (1990).

    Article  ADS  Google Scholar 

  13. A. V. Morozhenko, “New determination of monochromatic methane absorption coefficients with regard to the thermal conditions in the atmospheres of giant planets. IV. Jupiter and Saturn,” Kinematics Phys. Celestial Bodies 23, 245–257 (2007).

    Article  ADS  Google Scholar 

  14. A. V. Morozhenko and A. S. Ovsak, “On the possibility of separation of aerosol and methane absorption in the long-wavelength spectral range for giant planets,” Kinematics Phys. Celestial Bodies 31, 225–231 (2015).

    Article  ADS  Google Scholar 

  15. A. V. Morozhenko, A. S. Ovsak, A. P. Vid’machenko, V. G. Teifel, and P. G. Lysenko, “Imaginary part of the refractive index of aerosol in latitudinal belts of Jupiter’s disc,” Kinematics Phys. Celestial Bodies 32, 30–37 (2016).

    Article  ADS  Google Scholar 

  16. A. V. Morozhenko and E. G. Yanovitskii, “The optical properties of Venus and the Jovian planets I. The atmosphere of Jupiter according to polarimetric observations,” Icarus 18, 583–592 (1973).

    Article  ADS  Google Scholar 

  17. A. S. Ovsak, “Upgraded technique to analyze the vertical structure of the aerosol component of the atmospheres of giant planets,” Kinematics Phys. Celestial Bodies 29, 291–300 (2013).

    Article  ADS  Google Scholar 

  18. A. S. Ovsak, “Variations of the volume scattering coefficient of aerosol in the Jovian atmosphere from observations of the planetary disk,” Kinematics Phys. Celestial Bodies 31, 197–204 (2015).

    Article  ADS  Google Scholar 

  19. A. S. Ovsak, V. G. Teifel, A. P. Vid’machenko, and P. G. Lysenko, “Zonal differences in the vertical structure of the cloud cover of Jupiter from the measurements of the methane absorption bands at 727 and 619 nm,” Kinematics Phys. Celestial Bodies 31, 119–130 (2015).

    Article  ADS  Google Scholar 

  20. V. Ragent, D. S. Colburn, K. A. Rages, et al., “The clouds of Jupiter: Results of the Galileo Jupiter mission probe nephelometer experiment,” J. Geophys. Res.: Planets 103, 22891–22909 (1998).

    Article  ADS  Google Scholar 

  21. S. Vinatier, P. Rannou, S. M. Anderson, et al., “Optical constants of Titan’s stratospheric aerosols in the 70–1500 cm-1 spectral range constrained by Cassini/CIRS observations,” Icarus 219, 5–12 (2012).

    Article  ADS  Google Scholar 

  22. E. G. Yanovitskij and A. S. Ovsak, “Effective optical depth of absorption line formation in semi-infinite planetary atmospheres,” Kinematics Phys. Celestial Bodies 13 (4), 1–19 (1997).

    ADS  Google Scholar 

  23. X. Zhang, R. A. West, D. Banfield, and Y. L. Yung, “Stratospheric aerosols on Jupiter from Cassini observations,” Icarus 226, 159–171 (2013).

    Article  ADS  Google Scholar 

  24. Xi. Zhang, R. A. West, P. G. J. Irwin, et al., “Aerosol influence on energy balance of the middle atmosphere of Jupiter,” Nat. Commun. 6, 10231 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Ovsak.

Additional information

Original Russian Text © A.S. Ovsak, A.V. Morozhenko, 2017, published in Kinematika i Fizika Nebesnykh Tel, 2017, Vol. 33, No. 5, pp. 59–67.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovsak, A.S., Morozhenko, A.V. Corrected spectral dependence of the imaginary part of the refractive index of aerosol in Jupiter’s atmosphere in the short-wavelength spectral range. Kinemat. Phys. Celest. Bodies 33, 239–244 (2017). https://doi.org/10.3103/S088459131705004X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S088459131705004X

Navigation