Advertisement

Kinematics and Physics of Celestial Bodies

, Volume 33, Issue 5, pp 239–244 | Cite as

Corrected spectral dependence of the imaginary part of the refractive index of aerosol in Jupiter’s atmosphere in the short-wavelength spectral range

Dynamics and Physics of Bodies of the Solar System
  • 20 Downloads

Abstract

To correctly determine the relative contribution of aerosol to the scattering properties of a gas–aerosol medium in the continuum, we propose a method that allows more reliable values of the imaginary part of the refractive index n i to be obtained for Jupiter’s atmosphere in the short-wavelength spectral range. We considered the measurement data on the spectral values of the geometric albedo of Jupiter acquired in 1993 and used the model of homogeneous spherical aerosol particles. The obtained values of n i are 0.00378, 0.00309, 0.00254, 0.00175, 0.00123, 0.00084, 0.00064, 0.00045, 0.00031, 0.00033, 0.00013, and 0.00008 at wavelengths λ = 320, 350, 375, 400, 420, 450, 470, 500, 520, 550, 606, and 631 nm, respectively.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. V. Morozhenko, “Jovian cloud stratification,” Sov. Astron. Lett. 10, 323–325 (1984).ADSGoogle Scholar
  2. 2.
    A. V. Morozhenko, “Vertical structure of the latitude cloud bands of Jupiter,” Sol. Syst. Res. 19, 44–52 (1985).Google Scholar
  3. 3.
    A. V. Morozhenko, “Problems of the vertical structure of cloud layers in the atmospheres of giant planets,” Kinematika Fiz. Nebesnykh Tel 9 (6), 3–26 (1993).MathSciNetGoogle Scholar
  4. 4.
    A. V. Morozhenko, “Difference in the vertical structure of cloud layers of giant planets,” Kinematika Fiz. Nebesnykh Tel 17, 261–278 (2001).ADSGoogle Scholar
  5. 5.
    A. V. Morozhenko and A. S. Ovsak, “On the possibility of determining the imaginary part of the complex refractive index of aerosol particles in an individual altitudinal cloud layer of Jupiter’s atmosphere,” Kinematics Phys. Celestial Bodies 32, 294–298 (2016).ADSCrossRefGoogle Scholar
  6. 6.
    A. V. Morozhenko and E. G. Yanovitskij, “Parameters of an optical model of the Jupiter atmosphere for continuous spectra in the 0.35–0.92 micron region,” Sov. Astron. Lett. 2, 20–21 (1976).ADSGoogle Scholar
  7. 7.
    Z. M. Dlugach and M. I. Mischenko, “The effect of aerosol shape in retrieving optical properties of cloud particles in the planetary atmospheres from the photopolarimetric data. Jupiter,” Sol. Syst. Res. 39, 102–111 (2005).ADSCrossRefGoogle Scholar
  8. 8.
    Z. M. Dlugach and M. I. Mischenko, “Photopolarimetry of planetary atmospheres: What observational data are essential for a unique retrieval of aerosol microphysics?,” Mon. Not. R. Astron. Soc. 384, 64–70 (2008).ADSCrossRefGoogle Scholar
  9. 9.
    E. Karkoschka, “Spectrophotometry of the Jovian planets and Titan at 300-to 1000-nm wavelength: The methane spectrum,” Icarus 111, 967–982 (1994).CrossRefGoogle Scholar
  10. 10.
    V. N. Khare, C. Sagan, E. T. Arakawa, et al., “Optical constants of organic tholins produced in a simulated Titanian atmosphere: From soft x-ray to microwave frequencies,” Icarus 60, 127–137 (1984).ADSCrossRefGoogle Scholar
  11. 11.
    B. N. Khare, C. Sagan, W. R. Thompson, et al., “Solid hydrocarbon aerosols produced in simulated Uranian and Neptunian stratospheres,” J. Geophys. Res.: Space Phys. 92, 15067–15082 (1987).ADSCrossRefGoogle Scholar
  12. 12.
    M. I. Mishchenko, “Physical properties of the upper tropospheric aerosols in the equatorial region of Jupiter,” Icarus 84, 296–304 (1990).ADSCrossRefGoogle Scholar
  13. 13.
    A. V. Morozhenko, “New determination of monochromatic methane absorption coefficients with regard to the thermal conditions in the atmospheres of giant planets. IV. Jupiter and Saturn,” Kinematics Phys. Celestial Bodies 23, 245–257 (2007).ADSCrossRefGoogle Scholar
  14. 14.
    A. V. Morozhenko and A. S. Ovsak, “On the possibility of separation of aerosol and methane absorption in the long-wavelength spectral range for giant planets,” Kinematics Phys. Celestial Bodies 31, 225–231 (2015).ADSCrossRefGoogle Scholar
  15. 15.
    A. V. Morozhenko, A. S. Ovsak, A. P. Vid’machenko, V. G. Teifel, and P. G. Lysenko, “Imaginary part of the refractive index of aerosol in latitudinal belts of Jupiter’s disc,” Kinematics Phys. Celestial Bodies 32, 30–37 (2016).ADSCrossRefGoogle Scholar
  16. 16.
    A. V. Morozhenko and E. G. Yanovitskii, “The optical properties of Venus and the Jovian planets I. The atmosphere of Jupiter according to polarimetric observations,” Icarus 18, 583–592 (1973).ADSCrossRefGoogle Scholar
  17. 17.
    A. S. Ovsak, “Upgraded technique to analyze the vertical structure of the aerosol component of the atmospheres of giant planets,” Kinematics Phys. Celestial Bodies 29, 291–300 (2013).ADSCrossRefGoogle Scholar
  18. 18.
    A. S. Ovsak, “Variations of the volume scattering coefficient of aerosol in the Jovian atmosphere from observations of the planetary disk,” Kinematics Phys. Celestial Bodies 31, 197–204 (2015).ADSCrossRefGoogle Scholar
  19. 19.
    A. S. Ovsak, V. G. Teifel, A. P. Vid’machenko, and P. G. Lysenko, “Zonal differences in the vertical structure of the cloud cover of Jupiter from the measurements of the methane absorption bands at 727 and 619 nm,” Kinematics Phys. Celestial Bodies 31, 119–130 (2015).ADSCrossRefGoogle Scholar
  20. 20.
    V. Ragent, D. S. Colburn, K. A. Rages, et al., “The clouds of Jupiter: Results of the Galileo Jupiter mission probe nephelometer experiment,” J. Geophys. Res.: Planets 103, 22891–22909 (1998).ADSCrossRefGoogle Scholar
  21. 21.
    S. Vinatier, P. Rannou, S. M. Anderson, et al., “Optical constants of Titan’s stratospheric aerosols in the 70–1500 cm-1 spectral range constrained by Cassini/CIRS observations,” Icarus 219, 5–12 (2012).ADSCrossRefGoogle Scholar
  22. 22.
    E. G. Yanovitskij and A. S. Ovsak, “Effective optical depth of absorption line formation in semi-infinite planetary atmospheres,” Kinematics Phys. Celestial Bodies 13 (4), 1–19 (1997).ADSGoogle Scholar
  23. 23.
    X. Zhang, R. A. West, D. Banfield, and Y. L. Yung, “Stratospheric aerosols on Jupiter from Cassini observations,” Icarus 226, 159–171 (2013).ADSCrossRefGoogle Scholar
  24. 24.
    Xi. Zhang, R. A. West, P. G. J. Irwin, et al., “Aerosol influence on energy balance of the middle atmosphere of Jupiter,” Nat. Commun. 6, 10231 (2015).ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  1. 1.Main Astronomical ObservatoryNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations