Seismic Instruments

, Volume 53, Issue 4, pp 296–308 | Cite as

Technologies of preliminary data processing for multidisciplinary geophysical monitoring and a case study of their application in the Kamchatka geoacoustic observation system

  • V. A. Gavrilov
  • A. V. Desherevskii
  • E. V. Poltavtseva
  • A. Ya. Sidorin
Article
  • 12 Downloads

Abstract

The problems and procedures for obtaining high quality results of multidisciplinary geophysical monitoring at the stage of preliminary data processing are considered. The case study of solving different technical problems during the long-term multidisciplinary borehole geophysical observations at the Petropavlovsk- Kamchatsky geodynamic research area is described. The algorithms for preliminary data processing and flawed data discard combining automated approaches and expert screening developed by the authors are presented. Suppression of quasi-regular disturbances is especially important in the studies of interrelations between geoacoustic, electromagnetic, and meteorological processes and seismicity because of the clear diurnal periodicity in all these processes that significantly complicates the signal extraction from the noise. The key technical, organizational, and methodical measures aimed at improving the data should be provided at the project planning stage of the measurement system. The optimal selection and reasoned application of special procedures for data preprocessing can crucially affect the research results.

Keywords

geophysical monitoring geoacoustic monitoring preliminary data processing data processing algorithms automated procedures expert screening Petropavlovsk-Kamchatsky geodynamic research area 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belyakov, A.S., Kuznetsov, V.V., and Nikolaev, A.V., Acoustic emission in the upper part of the Earth’s crust, Izv. Akad. Nauk. SSSR. Fiz. Zemli, 1991, no. 10, pp. 79–84.Google Scholar
  2. Bernardi, A., Fraser-Smith, A.C., McGill, P.R., and Villard, O.G., ULF magnetic field measurements near the epicenter of the Ms 7.1 Loma Prieta earthquake, Phys. Earth Planet. Inter., 1991, vol. 68, pp. 45–63, doi 10.1016/0031- 9201(91)90006-4CrossRefGoogle Scholar
  3. Deshcherevskii, A.V. and Sidorin, A.Ya., Nekotorye voprosy metodiki otsenki srednesezonnykh funktsii dlya geofizicheskikh dannykh (Some Problems of Estimating Average Seasonal Functions for Geophysical Data), Moscow: Ob”ed. Inst. Fiz. Zemli Ross. Akad. Nauk, 1999.Google Scholar
  4. Deshcherevskii, A.V. and Sidorin, A.Ya., Two models of seasonal variations in geophysical fields, Izv., Phys. Solid Earth, 2000, vol. 36, no. 6, pp. 449–459.Google Scholar
  5. Deshcherevskii, A.V. and Sidorin, A.Ya., Technical problems and errors during the work with earthquake catalogs, Nauka Tekhnol. Razrab., 2014, vol. 93, no. 4, pp. 32–41.Google Scholar
  6. Deshcherevskii, A.V., Zhuravlev, V.I., and Sidorin, A.Ya., Some filtering algorihms for geophysical temporal series, Izv., Phys. Solid Earth, 1996, vol. 32, no. 2, pp. 138–148.Google Scholar
  7. Deshcherevskii, A.V., Zhuravlev, V.I., Nikol’skii, A.N., and Sidorin, A.Ya., WinABD software package as a universal tool for analyzing the monitoring observation data, Nauka Tekhnol. Razrab., 2016a, vol. 95, no. 4, pp. 21–34.Google Scholar
  8. Deshcherevskii, A.V., Zhuravlev, V.I., Nikol’skii, A.N., and Sidorin, A.Ya., Problems of analyzing the time series with missing fragments and their solutions by using the WinABD software, Geofiz. Protsessy Biosfera, 2016b, vol. 15, no. 3, pp. 5–34.Google Scholar
  9. Deshcherevskii, A.V., Lukk, A.A., Sidorin, A.Ya., Flicker noise structure in the time realizations of geophysical fields, Izv., Phys. Solid Earth, 1997, vol. 33, no. 7, pp. 515–529.Google Scholar
  10. Desherevskii, A.V., Zhuravlev, V.I., Nikolsky, A.N., and Sidorin, A.Ya., Technology for analyzing geophysical time series: Part 2. WinABD—A software package for maintaining and analyzing geophysical monitoring data, Seism. Instrum., 2017, vol. 53, no. 3, pp. 203–223.CrossRefGoogle Scholar
  11. Fraser-Smith, A.C., Bernardi, A., McGill, P.R., Bowen, M.M., Ladd, M.E., Helliwell, R.A., and Villard, O.G., Low-frequency magnetic field measurements near the epicenter of the Ms 7.1 Loma Prieta earthquake, Geophys. Res. Lett., 1990, vol. 17, no. 9, pp. 1465–1468.CrossRefGoogle Scholar
  12. Gavrilov, V.A. and Panteleev, I.A., Influence of filtering processesin rocks on characteristics of geoacoustic emission, Geofiz. Issled., 2016, vol. 17, no. 2, pp. 32–53.Google Scholar
  13. Gavrilov, V.A., Morozova, Yu.V., and Storcheus, A.V., Variations in the geoacoustic emission level in the G-1 deep well (Kamchatka) and their relationship to seismic activity, Vulkanol. Seismol., 2006, no. 1, pp. 52–67.Google Scholar
  14. Gavrilov, V., Bogomolov, L., Morozova, Yu., and Storcheus, A., Variations in geoacoustic emissions in a deep borehole and its correlation with seismicity, Ann. Geophys., 2008, vol. 51, nos. 5–6, pp. 737–753.Google Scholar
  15. Gavrilov, V.A., Panteleev, I.A., Ryabinin, G.V., and Morozova, Yu.V., Modulating impact of electromagnetic radiation on geoacoustic emission of rocks, Russ. J. Earth Sci., 2013, vol. 13, no. 1, pap. no. ES1002, doi 10.2205/2013ES000527Google Scholar
  16. Gavrilov, V.A., Panteleev, I.A., and Ryabinin, G.V., The physical basis of the effects caused by electromagnetic forcing in the intensity of geoacoustic processes, Izv., Phys. Solid Earth, 2014, vol. 50, no. 1, pp. 87–101.CrossRefGoogle Scholar
  17. Gavrilov, V.A., Poltavtseva, E.V., Desherevsky, A.V., Buss, Yu.Yu., and Morozova, Yu.V., Geological environmental monitoring based on synchronous borehole geoacoustic and electromagnetic measurements: Use of natural geomagnetic radiation, Seism. Instrum., 2016, vol. 52, no. 3, pp. 266–277.CrossRefGoogle Scholar
  18. Habermann, R.E., Man-made changes of seismicity rates, Bull. Seismol. Soc. Am., 1987, vol. 77, pp. 141–159.Google Scholar
  19. Habermann, R.E. and Creamer, F., Catalog errors and the M8 earthquake prediction algorithm, Bull. Seismol. Soc. Am., 1994, vol. 84, no. 5, pp. 1551–1559.Google Scholar
  20. Mirzoev, K.M., Negmatullaev, S.Kh., Simpson, D., and Soboleva, O.V., Vozbuzhdennaya seismichnost’ v raione vodokhranilishcha Nurekskoi GES (Induced Seismicity in the Area of the Nurek HPS and Its Reservoir), Dushanbe: Donish, 1987.Google Scholar
  21. Poltavtseva, E.V., Vlasov, Yu.A., and Gavrilov, V.A., A study of responses in the series of borehole geoacoustic measurements to the tidal effect, Vestn. KRAUNTs. Nauki Zemle, 2013, vol. 22, no. 2, pp. 178–183.Google Scholar
  22. Sadovskii, M.A. and Nersesov, I.L., Problems of earthquake prediction, Izv. Akad. Nauk SSSR. Fiz. Zemli, 1978, no. 9, pp. 13–30.Google Scholar
  23. Sidorin, A.Ya., Disturbances of atmospheric electrical potential with respect to earthquakes in the Garm test area, Seism. Prib., 2000, vol. 33, pp. 78–95.Google Scholar
  24. Sidorin, A.Ya., The unusual diurnal periodicity of earthquakes in the Naryn River basin, Geofiz. Issled., 2005a, no. 3, pp. 51–62.Google Scholar
  25. Sidorin, A.Ya., The annual and diurnal periodicities of earthquakes in the Nurek area, Geofiz. Issled., 2005b, no. 4, pp. 99–114.Google Scholar
  26. Sidorin, A.Ya., Diurnal periodicity in Central Asia earth tremors. Part II. Naryn River basin, Seism. Instrum., 2005c, vol. 41, pp. 42–54.Google Scholar
  27. Sidorin, A.Ya., Diurnal periodicity of earthquakes in Central Asia. Part 3. The Nurek region, Republic of Tajikistan, Seism. Instrum., 2006, vol. 42, pp. 33–48.Google Scholar
  28. Sidorin, A.Ya., Diurnal periodicity of earthquakes in Central Asia. Part 5. Catalogue of the Kyrgyz Digital Broadband Seismic Network KNET, Seism. Instrum., 2007, vol. 43, pp. 61–78.Google Scholar
  29. Sidorin, A.Ya., Technogenic effects in the seismicity of the Kurpsai and Toktogul reservoir regions, Seism. Instrum., 2015a, vol. 51, no. 4, pp. 300–310.CrossRefGoogle Scholar
  30. Sidorin, A.Ya., Technogenic diurnal periodicity of seismic events in the Nurek reservoir area, Nauka Tekhnol. Razrab., 2015b, vol. 94, no. 2, pp. 28–44.Google Scholar
  31. Simpson, D.W., Hamburger, M.W., Pavlov, V.D., and Nersesov, I.L., Tectonics and seismicity of the Toktogul reservoir region, Kirgizia, USSR, J. Geophys. Res., B, 1981, vol. 86, no. B1, pp. 345–358.Google Scholar
  32. Thomas, J.N., Love, J.J., and Johnston, M.J.S., On the reported magnetic precursor of the 1989 Loma Prieta earthquake, Phys. Earth Planet. Inter., 2009, vol. 173, pp. 207–215.CrossRefGoogle Scholar
  33. Vlasov, Yu.A., Gavrilov, V.A., Denisenko, V.P., and Fedoristov, O.V., Telemetry system of multidisciplinary geophysical monitoring, Seism. Instrum., 2009, vol. 44, pp. 14–18.CrossRefGoogle Scholar
  34. Zuñiga, F.R. and Wiemer, S., Seismicity patterns: Are they always related to natural causes?, Pure Appl. Geophys., 1999, vol. 155, pp. 713–726.CrossRefGoogle Scholar
  35. Zuñiga, R. and Wyss, M., Inadvertent changes in magnitude reported in earthquake catalogs: Influence on b-value estimates, Bull. Seismol. Soc. Am., 1995, vol. 85, pp. 1858–1866.Google Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • V. A. Gavrilov
    • 1
  • A. V. Desherevskii
    • 2
  • E. V. Poltavtseva
    • 1
  • A. Ya. Sidorin
    • 2
  1. 1.Institute of Volcanology and Seismology, Far East BranchRussian Academy of SciencesPetropavlovsk-KamchatskyRussia
  2. 2.Schmidt Institute of Physics of the EarthRussian Academy of SciencesMoscowRussia

Personalised recommendations