Seismic Instruments

, Volume 53, Issue 4, pp 280–285 | Cite as

Electrodynamic geophones beyond the limit of capacity

Article
  • 12 Downloads

Abstract

Low-frequency deconvolution of precise digital records of seismic and industrial vibrations allows significant expansion of the frequency range of electrodynamic geophones, limited only by the deconvolution noise, which is represented by increased instrumental noise. A dependence of deconvolution noise on the decrease rate of a sensor’s natural frequency and the level of initial instrumental noise is assessed theoretically. A method and a simple stand for the experimental evaluation of deconvolution quality are proposed and an example of a hundredfold virtual decrease in natural frequency of the sensor used in the real record is presented.

Keywords

low-frequency deconvolution quality of deconvolution correction of frequency characteristics frequency correction of record reduction of natural frequency natural frequency pendulum stand electrodynamic geophone velocimeter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bendat, J.S. and Pearsol, A.G., Random Data: Analysis and Measurement Procedures, New York: Wiley, 1971.Google Scholar
  2. Besedina, A.N. and Kabychenko, N.V., A study of seismic vibrations in the long-period part of the spectrum, Tr. MFTI, 2011, vol. 3, no. 3, pp. 51–55.Google Scholar
  3. Besedina, A.N., Kabychenko, N.V., Kocharyan, G.G., and Pavlov, D.V., Correction of frequency characteristics of seismic sensors and noise of corresponding measuring channels, Seism. Instrum., 2012, vol. 48, no. 1, pp. 51–56.CrossRefGoogle Scholar
  4. Bogdanov, V.I. and Graizer, V.M., Determination of residual soil displacement from seismograms, Dokl. Akad. Nauk SSSR, 1976, vol. 229, no. 1, pp. 59–62.Google Scholar
  5. Gamburtsev, G.A., Osnovy seismorazvedki (Fundamentals of Seismic Survey), Moscow: Gostoptekhizdat, 1959, 2nd ed.Google Scholar
  6. Graizer, V.M., Determination of true soil displacement from records of strong motions, Izv. Akad. Nauk SSSR. Fiz. Zemli, 1979, no. 12, pp. 36–50.Google Scholar
  7. Graizer, V.M., “Istinnoe” dvizhenie pochvy v epitsentral’noi zone (“True” Soil Displacement in the Epicentral Zone), Moscow: Inst. Fiz. Zemli Akad. Nauk SSSR, 1984.Google Scholar
  8. Perepelitsa, V.A., Opredelenie istinnogo smeshcheniya “pochvy” poseismogramme (Determination of True Soil Displacement from Seismograms), Moscow: Nauka, 1974.Google Scholar
  9. Ponomarev, A.V. and Sidorin, A.Ya., Boris Borisovich Golitsyn (1862–1916), the founder of contemporary seismology: On the 150th Anniversary, Vestn. Otd. Nauk Zemle Ross. Akad. Nauk, 2012, vol. 4, pap. no. NZ6001.Google Scholar
  10. Rykov, A.V., Expansion of the frequency characteristics of a seismograph by filtering, Seism. Prib., 1972, no. 6, pp. 32–34.Google Scholar
  11. Savarenskii, E.F. and Kirnos, D.P., Elementy seismologii i seismometrii (Fundamentals of Seismology and Seismometry), Moscow: Gostekhizdat, 1955.Google Scholar
  12. Savarenskii, E.F., Kosarev, G.L., and Sadikov, F.S., Restoration of true soil displacement from earthquake records, Izv. Akad. Nauk SSSR. Fiz. Zemli, 1977, no. 1, pp. 77–83.Google Scholar
  13. Yushin, V.I., Low-frequency deconvolution of a digital record made by a short-period seismometer, Geol. Geofiz., 2001, vol. 42, no. 5, pp. 852–863.Google Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  1. 1.Trofimuk Institute of Petroleum Geology and Geophysics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations